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Abstract—A continuum mechanical model is developed to 

analyze the electrorheological responses and flow phenomena of a 
particle-liquid mixture with the suspended micro-particles 
undergoing spontaneous electrorotation, or Quincke rotation, for 
both two dimensional Couette and Poiseuille flow geometries by 
combining particle electromechanics and continuum 
anti-symmetric stress analyses in the zero spin viscosity limit. 
Predicted results show that with a direct current electric field 
strength higher than the Quincke threshold applied 
perpendicularly to the flow direction, the spin velocity is increased 
and the effective viscosity is decreased as compared to the zero 
electric field value of the electrorheological fluid viscosity for 
Couette flow at a given driving shear rate. Moreover, it is also 
found that with a constant driving pressure gradient, the 
spontaneous internal particle electrorotation increases the 
electrorheological fluid rotation as well as enhances the flow 
velocity and the subsequent two-dimensional volume flow rate of 
Poiseuille flow when the applied direct current electric field 
perpendicular to the direction of flow has a strength higher than 
the critical strength for the onset of Quincke rotation. These 
continuum mechanical results of the effective viscosity and 
volume flow rate qualitatively agree with those obtained from 
effective continuum models (based on single particle dynamics) 
and general experimental observations as found in current 
literature. 
 

Index Terms—Continuum anti-symmetric stress tensor; 
electrohydrodynamics; Maxwell-Wagner polarization; negative 
electrorheology; Quincke rotation 
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I. INTRODUCTION 
LECTRORHEOLOGICAL (ER) fluids are a class of fluids 
that consist of conducting or insulating solid 

micro-particles suspended within a dielectric liquid medium. 
Due to the electrical property (e.g. conductivity and/or 
permittivity) mismatch between the solid and liquid phases, one 
can control the apparent macroscopic properties of the ER fluid 
such as the bulk modulus or the effective viscosity via the 
application of external electric fields. Literature has therefore 
categorized ER effects, based on the flow or rheological 
responses, into either positive ER or negative ER phenomena 
when the fluid is subjected to electric fields [1]-[6]. 

Foulc et al. [4] and Boissy et al. [5] had their first qualitative 
distinction of the positive and negative ER effects based upon 
the relative magnitudes of the respective electrical 
conductivities of the solid and liquid phases. For ER fluids 
consisting of micro-particles with a conductivity, 2σ , larger 
than that, 1σ , of the carrier liquid, stable particle chains are 
formed in the direction of the electric field so that the 
macroscopic fluid resistance against externally applied shear 
perpendicular to the electric field is enhanced and result in an 
increased measured modulus or effective viscosity—the 
positive ER effect [1]-[3]. On the other hand, when the 
conductivity of the carrier liquid is larger than that of the 
micro-particles, i.e., 1 2σ σ> , laminated layers (perpendicular 
to the electric field) of packed particles resulting from 
electromigration are formed adjacent to one of the two 
electrodes leaving a portion of the ER fluid relatively clear of 
particles and hence leading to a reduction in the resistance 
against externally applied shear forces perpendicular to the 
electric field and a decrease in the modulus or the effective 
viscosity is measured—the negative ER effect [5]-[6]. 

Despite the relatively sparse reports on negative ER effects, 
recent experimental observations found that: (i) with a given 
constant shear rate or equivalently the Couette boundary 
driving velocity, the measured shear stress required to drive the 
Couette ER fluid flow is reduced (an effectively decreased 
viscosity) and (ii) at a given constant pressure gradient, the 
Poiseuille flow rate of the ER fluid can be increased for both 
flows by applying a uniform direct current (DC) electric field 
perpendicular to the direction of the flows [7]-[12]. The 
mechanism responsible for the apparent increased flow rate or 
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decreased effective viscosity was attributed to the spontaneous 
electrorotation of the dielectric micro-particles suspended 
within the carrier liquid, which is a mechanism different from 
the traditional electrophoresis or electro-migration explanation 
as mentioned in previous negative ER literature. This 
spontaneous particle rotation under the action of a DC electric 
field is often called “Quincke rotation” for von G. Quincke’s 
systematic study done in 1896 [13]-[18]. 

The origin of Quincke rotation can be illustrated by 
considering a collection of insulating dielectric spherical 
particles with permittivity 2ε  and conductivity 2σ  suspended 
in a slightly conducting carrier liquid having a permittivity of 

1ε  and a conductivity of 1σ . The material combination is 
chosen so that 2 1τ τ>  where 1 1 1τ ε σ=  and 2 2 2τ ε σ=  are the 
relaxation time constants of the liquid and the particles, 
respectively. When a uniform DC electric field is applied 
across the suspension, charge relaxation occurs according to the 
Maxwell-Wagner (MW) polarization at the solid-liquid 
interfaces, and each of the suspended particles attains a final 
equilibrium dipole moment in the opposite direction to that of 
the applied DC field for the condition of 2 1τ τ> , i.e., liquid 
relaxes faster than particle. This, however, is an unstable 
equilibrium, and as the applied electric field reaches some 
critical value [17]-[18], namely, 

( )
0 12

1 1 2 2 1

81
2 3cE η σσ
σ ε σ τ τ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

≡ +
−

,                                                                  (1) 

where 0η  is the viscosity of the carrier liquid, the liquid viscous 
torque can no longer withstand any small perturbations on the 
particles whence giving rise to spontaneous, self-sustained 
particle rotation either clockwise or counter clockwise (with the 
rotation axis perpendicular to the planes defined by the electric 
field) due to the electrical torque arising from the misalignment 
of the particle dipole moment and the applied DC field.  
    When the particle-liquid suspension or ER fluid is driven by 
a boundary shear stress (Couette) or a pressure gradient 
(Poiseuille), the macroscopic flow vorticity gives the 
suspended micro-particles, instead of by random chance, 
preferable directions for rotation via viscous interactions once 
the external electric field larger than the critical field, cE , is 
applied. It is this combined effect of microscopic 
electrorotation and macroscopic flow vorticity that gives rise to 
the observed negative ER phenomenon as described above 
[7]-[12]. 

Although models are given in current literature for analyzing 
the present negative ER phenomenon, most of them are focused 
on the dynamics of a single particle and the utilization of a 

two-phase effective continuum description [7]-[12]. Little has 
been done in developing a continuum mechanical model from a 
more classical, field theory based perspective in predicting the 
dynamical behavior of fluids consisting of micro-particles 
undergoing spontaneous electrorotation. To the best of the 
authors’ knowledge, the ferrofluid spin-up flow is the most 
representative flow phenomenon arising from internal particle 
rotation in current rheology research [19]-[26].  

In a ferrofluid spin-up flow, magnetic torque is introduced 
into the ferrofluid, which consists of colloidally stabilized 
magnetic nanoparticles, typically magnetite, suspended in a 
non-magnetizable fluid, through the misalignment of the 
particle’s permanent magnetization and the applied rotating 
magnetic field. From a macroscopic point of view, the 
introduced magnetic torque manifests itself through the 
ensemble of the particle-liquid interactions as the 
anti-symmetric component of the continuum stress tensor while 
the average effect of the internal particle rotation is reflected in 
the macro, continuum fluid hydrodynamic spin velocity. In 
order to describe how particle rotation affects the continuum 
flow motion, an angular momentum conservation equation is 
added and coupled with the linear momentum equation so that, 
in general, the externally applied magnetic body couple, 
angular momentum conversion between linear and spin 
velocity fields, and the diffusive transport of angular 
momentum are incorporated into the description of the flow 
momentum balances [21], [27]-[29]. 

A fundamental issue in the current development of ferrofluid 
spin-up flow is whether the diffusive angular momentum 
transport or couple stress has a finite contribution in the angular 
momentum balances of the flow. The current consensus is that 
the couple stress contribution is vanishingly small, i.e., zero 
spin viscosity or diffusive transport conditions, as discussed in 
Rosensweig [21], Chaves et al. [25]-[26], Schumacher et al. 
[30], and so on. In a most recent work by Feng et al. [31], 
scaling and numerical analyses were presented to show that in 
the limit of an effective continuum, the angular momentum 
equation is to be couple stress free and the value of the spin 
viscosity should be identically zero. However, spin-up velocity 
profiles measured by ultrasound velocimetry reported by He 
[22], Elborai [23], and Chaves et al. [25]-[26] were compared 
with the numerical simulations of the full spin-up flow 
governing equations and found that the experimental and 
numerical results would agree only if the spin viscosity 
assumes some finite value instead of being vanishingly small or 
identically zero. 

Acknowledging the experimental and theoretical 
discrepancies in the value of spin viscosity and identifying the 
“mathematically analogous, physically parallel mechanisms” 
governing the respective electrorotation and ferrofluid spin-up 

TABLE I 
SUMMARY OF PHYSICAL ANALOGY BETWEEN THE ELECTROROTATION AND FERROFLUID SPIN-UP FLOWS 

 Electrorotation (Quincke rotation) flow Ferrofluid spin-up flow 
Particles Insulating dielectric (plastic) micro-particle Magnetic nano particles 
Origin of micro scale polarity Maxwell-Wagner (MW) polarization Permanent magnetic dipole 
Macroscopic polarity variable Polarization P  (due to induced free surface charge) Magnetization M  
Applied field DC electric field E  (combined with flow vorticity) Rotating magnetic field H  
Body torque density ( 2Nm− ) P E×

JG
 0 M Hµ ×  
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flows (as summarized in Table I), this work is therefore aimed 
at developing a classical continuum mechanical model that 
combines particle electrorotation and anti-symmetric stress 
theories for describing the electrorheological behavior of a 
particle-liquid mixture (termed ER fluid henceforward) 
subjected to a DC electric field strength higher than the 
Quincke rotation threshold in both Couette and Poiseuille flow 
geometries. Emphasis is especially placed on investigating the 
effects of a zero spin viscosity, ' 0η = , on the angular 
momentum balances in the flow or ER response. In the next 
section, the governing equations describing the mass 
conservation, linear momentum conservation, angular 
momentum conservation, and polarization relaxation of the ER 
fluid flow will be given in their most general forms. The 
specific governing equations, analytical solutions, and the 
evaluated numerical results are then presented, compared, and 
discussed in Sections III and IV to respectively show how the 
pertinent physical parameters are correlated with the ER 
responses and fluid flow in two dimensional (2D) Couette and 
Poiseuille flows with internal particle electrorotation. A 
concluding section will be given at the end of this article to 
summarize the principle findings of the present article and the 
motivations for future research. 

 

II. MATHEMATICAL FORMULATION 
    In order to quantitatively model and describe the present ER 
flow phenomenon, several physical principles involved are 
considered: (i) the continuity or mass conservation, (ii) the 
linear momentum balance, (iii) the angular momentum balance, 
and (iv) the polarization relaxation of the ER fluid flow. The 
governing equations are given in the following subsections to 
describe the above physical principles in proper mathematical 
forms. 
 

A. The Fluid Mechanical Equations 
    The equations describing the ER fluid motion are the mass 
continuity equation for incompressible flow, 

0v∇ ⋅ = ,                                                                                         (2) 
the linear momentum equation, 

( ) ( ) 22t e
Dv p P E v v
Dt

ρ ζ ω β η= −∇ + ⋅∇ + ∇× + ∇ ∇ ⋅ + ∇ ,         (3) 

and the angular momentum equation, 

( ) ( ) 22 2 ' 't
DI P E v
Dt

ω ζ ω β ω η ω= × + ∇× − + ∇ ∇ ⋅ + ∇ ,         (4) 

where v  is the linear flow velocity, ρ  is the ER fluid density, 
p  is the pressure in the flow field, tP  is the fluid total 

polarization, E  is the electric field, ω  is the flow spin velocity, 
I  is the average moment of inertia per unit volume, 'η  is the 
spin viscosity, ζ  is the vortex viscosity which is related to the 
carrier liquid viscosity, 0η , and particle solid fraction, φ , 
through 01.5ζ φη≈  for dilute suspensions with 1φ � , 
β λ η ζ= + −  is the sum of  the second coefficient of viscosity, 
λ , the zero field ER fluid viscosity, ( )0 1 2.5η η φ≈ + , and the 

negative of the vortex viscosity, eη η ζ= +  is the sum of the 
zero field ER fluid viscosity and the vortex viscosity, 

' ' 'β η λ= +  is the sum of the spin viscosity and the second 
coefficient of spin viscosity, 'λ  [21], [28], [32], and D Dt  is 
the material derivative given by 

( )D v
Dt t

∂= + ⋅∇
∂

.                                                                                 (5) 

Note that (3) generally follows the form of the well known 
Navier-Stokes equation. However, by introducing particle 
rotation to the fluid flow, additional terms are included in (3) to 
account for the Kelvin body force density, ( )tP E⋅∇ , and the 

anti-symmetric force density, 2ζ ω∇ × , contributions in the 
linear momentum balances of the fluid flow. Moreover, (4) 
characterizes the ER fluid rotation velocity, or spin velocity, so 
that the torque and angular momentum balances resulting from 
the electrical torque input and fluid motion can be described 
and related to other variables pertinent to this problem. In (4), 
the left hand side represents the angular momentum of a 
continuum ER fluid particle; the first term on the right hand 
side (RHS) represents the electrical torque introduced to the 
flow field via the rotating micro-particles under the action of 
the external DC field; the second term on the RHS represents 
the angular momentum transformation or conversion between 
the vorticity and the spin velocity fields; the third term on the 
RHS represents the gradient of the divergence of the spin 
velocity and is analogous to the “gradient of the divergence of 
the velocity” term in (3) that measures the bulk compression 
effects in the fluid flow; and finally, the fourth term on the RHS 
represents the diffusive transport of angular momentum within 
the flow field [21]. 

 

B. The Electro-quasi-static (EQS) and the Polarization 
Relaxation Equations 
The electric field in the ER flow field is described by the 

electro-quasi-static (EQS) Maxwell equations [16], [33] 

          

 z 

y 

x

R

2σ , 2ε  Ω

1σ , 1ε  

†
0 zE E i=  

r 

θ  

φ  

 
 

FIG. 1.  The schematic diagram for the problem of solving the EQS field 
around a spherical particle of radius R  (with conductivity of 2σ  and 
permittivity of 2ε ) suspended in a liquid medium (with 1σ , 1ε ) rotating at 
constant angular velocity xiΩ = Ω  subjected to a uniform DC electric field, 

†
0 zE E i= . 
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namely, 
0E∇× ≈ , and                                                                        (6) 

0fD ρ ≈∇ ⋅ = ,                                                                                (7) 

where  D  is the displacement field and fρ  is the free space 
charge density. Here, we have assumed that on the macroscopic 
continuum level, the free space charge is zero. To complete the 
description of the electrical subsystem, we need a continuum 
phenomenological polarization relaxation equation that 
accounts for the non-equilibrium effects of both the linear and 
angular motions on the ER fluid polarization. Since the torque 
input on the micro scale is related to the surface charge around 
the surface of the micro-particles, we shall focus on how 
non-equilibrium motion, i.e., micro-particle rotation, Ω , 
continuum fluid spin velocity, ω , and continuum fluid velocity, 
v , affects the retarding polarization (the part of polarization 
directly related to the surface charges) instead of the total 
polarization of the ER fluid. We start the construction of the 
polarization relaxation equation and its equilibrium 
polarization from the micro scale. 
      The problem of the EQS field around a spherical particle 
suspended in a liquid medium rotating at a constant speed, 

xiΩ = Ω , subjected to a uniform electric field, † †
0z z zE E i E i= =  

( †  denotes microscopic field quantities), as shown in Fig. 1 has 
been solved by Cebers [34]. Here, we only summarize the 
solutions to the electric potential and the dipole moment of the 
particle for r R> , where R  is the radius of the micro-particle. 
The outer electric potential ( r R> ) is given in spherical 
coordinates as 

( )

( )

†

1
3 62

1

†
0 2

1

0
4 cos sin sin

4

, , cos
4

cos

t r

a a
r

p ir rE
r

rE πε θ φ θ
πε

θ φ θ
πε

θ= +

⋅Φ = − +

− +
,           (8) 

where 

2 1 2 1

1 2 1 23 2 1
3 0 2 2

1 2

2 2
2 1 MW

a E R

σ σ ε ε
σ σ ε εε ε

ε ε τ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

− −−
+ +−= +

+ + Ω
,                       (9) 

2 1 2 1

1 2 1 23
6 0 2 2

2 2
1

MW

MW
a E R

σ σ ε ε τ
σ σ ε ε

τ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

− −− Ω
+ +

= −
+ Ω

,                             (10) 

† † † †
t x x y y z zp p i p i p i= + + ,                                                       (11) 

sin cos sin sin cosr x y zi i i iθ φ θ φ θ= + + ,                                 (12) 
and 

1 2

1 2

2
2MW

ε ε
τ

σ σ
+

≡
+

,                                                                    (13) 

is the MW relaxation time. Using (8)-(12), we can find the total 
dipole moment of the rotating particle, †

tp , as † 0xp = , 
†

1 64yp aπε= , and †
1 34zp aπε= , and the retarding part of the dipole 

moment is then found as 

† 3 2 1
1 6 1 3 0

1 22
4 4y za a E Rp i iε ε

ε ε
πε πε ⎛ ⎞−

−⎜ ⎟+⎝ ⎠
= + .                           (14) 

The surface charge around the spherical particle with half of the 
hemisphere having positive charge and the other half having 
negative charge is directly related to the retarding dipole 
moment (14) [34]. By applying a torque balance between the 
electric torque, † † † †

1 6 04t xp E p E a E iπε× = × = , and the viscous 
torque, 3

08 xR iπη− Ω , on the particle in steady state, we can find 
the critical electric field for Quincke rotation as given in (1) and 
the rotation velocity of the micro-particle being [18] 

2
01 1
cMW

E
Eτ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

Ω = ± − ,                                                           (15) 

where the + and - signs denote counter clockwise and clockwise 
rotation with the coordinate system defined in Fig. 1. In (15), 
we have assumed that the particle rotation is only in the 
x-direction; this is because we will only be considering 2D flow 
geometries in the following discussions. Note however that for 
the most general cases, the particle rotation axis is 
perpendicular to the planes defined by the electric field, which 
has a three dimensional feature. 
    We next consider a dilute particle suspension with a solid 
volume fraction of φ  and a particle number density of n  
subjected to the DC electric field. The solid volume fraction 
and the particle number density are related through 

( )
3

3

6
dn O nRπφ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∼ ,                                           (16) 

where 2d R=  is the diameter of the micro-particle. Assuming 
that the mutual electrical interactions between the suspended 
micro-particles can be neglected (i.e., dilute suspension), the 
macroscopic retarding polarization of the ER fluid at 
equilibrium, eqP , can be obtained by applying Maxwell’s 
effective medium theory [18] or spatial averaging based on a 
unit cell of the suspension [34]. The final results can be easily 
obtained by multiplying (14) with the particle number density, 
n , i.e., y z

eq eq y eq zP P i P i= +  with 

0

2 1 2 1

1 2 1 2
2 2

3
1

2 1 2 1

1 2 1 2
2 2

2 2
1

2 2
1

4

MW

y
eq MW
z

eq

MW

E
P

nR
P

σ σ ε ετ
σ σ ε ε

τ

σ σ ε ε
σ σ ε ε

τ

πε

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥⎣ ⎦ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥
⎣ ⎦

− −Ω −
+ +

−
+ Ω

− −−
+ +

+ Ω

= .           (17) 

Equation (17) represents the macroscopic retarding polarization 
of a static, motionless ER fluid, namely, 0ω =  and 0v = .  Yet, 
this does not mean that at macroscopic equilibrium, the 
micro-particles are not rotating on the microscopic level, i.e.. 

0Ω ≠ , when the applied electric field is larger than the critical 
electric field given in (1), that is, 0 cE E≥ . This idea is similar to 
the dynamic effective medium model shown in the work of 
Xiao et al. [35]. As for the cases of 0 cE E< , Ω  is set to zero in 
(17) since an applied field less than the critical field will give 
imaginary values of Ω  and the real root can only be zero. 
Combining (15) and (17) and extending the physical arguments 
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of the phenomenological magnetization relaxation equation 
proposed by Shliomis [21], [36]-[37] to the case of the retarding 
polarization, we arrive at the following retarding polarization 
relaxation equation, 

( ) ( )1
eq

MW

DP P P PDt ω
τ

= × − − ,                                         (18) 

where P  is the retarding polarization. 
    Equations (15)-(18) account for the non-equilibrium effects 
of micro-particle rotation velocity, Ω , fluid spin velocity, ω , 
and fluid translation velocity, v , on the retarding polarization, 
or more specifically, charge relaxation. Rigorously speaking, 
the particle rotation speed in (15) should be corrected both 
kinematically and dynamically for the differences in rotation 
speeds arising from different frames of reference. The particle 
rotation speed, Ω , that enters (17) and (18) should be the speed 
observed in the reference frame of the ER fluid spin velocity, 
ω . Yet, as a first approach, we use (15) to be the particle 
rotation velocity that enters (17) and (18). Practically speaking, 
inclusion of the frame correction on Ω  will cause numerical 
difficulties in the evaluation of the spin velocity solutions, ω . 
As will be seen in the following, the governing equations will 
be reduced into third order algebraic equations for both Couette 
and Poiseuille flows. Therefore, there will in general be two 
sets of three roots for ω  with the roots changing from real to 
imaginary valued or vice versa depending on the parametric 
regimes of interests for both flows, respectively. While only the 
real valued solutions are valid in the solution process, a frame 
of reference correction to the particle rotation speed Ω  used in 
(17) and (18) will cause the real valued solution to jump among 
all three roots of ω  instead of one or two uniformly valid roots 
through out the evaluation domains. If all three roots contribute 
to the real valued solution of ω , we will need to exactly pin 
point the parametric regimes in which the solution changes 
from real to imaginary and vice versa for each root, causing the 
solution process to be much more involved and generally does 
not improve the solution to a greater deal of accuracy as 
compared to the experimental results. The solutions without the 
reference frame correction presented herein slightly under 
predicts the reduction in the effective viscosity at high shear 
rates and electric field strengths as compared to those done with 
a first attempt of reference frame correction for Couette flows. 
 

III. COUETTE FLOW WITH INTERNAL PARTICLE 
ELECTROROTATION 

A. The Governing Equations Specific to the Couette Flow 
Geometry 

    Consider the Couette flow geometry shown in the schematic 
diagram of Fig. 2. The lower plate of the parallel plate system is 
fixed at zero velocity while the upper plate is applied with a 
constant velocity, 0U , in the positive y-direction. We assume 
that the flow is steady ( 0t∂ ∂ = ), incompressible, fully 
developed ( 0y∂ ∂ = ), and two-dimensional ( 0x∂ ∂ = ) in 
Cartesian coordinates. Under these assumptions, the continuity 
equation, (2), is readily reduced to 0zdu dz =  and subsequently 
to 0zu =  since the z-velocity component, zu , has to satisfy the 
no-slip and non-penetrating (impermeable walls) boundary 
conditions at 0z =  and h  with h  being the height of the 2D 
channel. Moreover, by using the EQS Faraday’s equation, (6), 
with the condition of fully developed flow, we find 0ydE dz =  
such that yE  is just a constant throughout the 2D channel. 
Noting that the boundaries at 0z =  and h  are perfectly 
conducting electrodes, and that the tangential component of the 
electric field is continuous across the boundaries, the constant 

yE  is simply zero. Therefore, the applied DC electric field is to 
be in the z-direction only. The fringing effects at the ends of the 
channel are to be neglected. 
    The governing equations are further simplified by 
considering a zero spin viscosity, i.e., ' 0η = , in the angular 
momentum equation, (4). Given the above assumptions 
combined with the continuity and zero spin viscosity conditions, 
(3), (4), and (18), are then simplified into the following: 

( ) 0y
MW x z y eqP P Pτ ω− − − = ,                                        (19a) 

( ) 0z
MW x y z eqP P Pτ ω − − = ,                                          (19b) 

2

22 0yx
e

d ud
dz dz
ω

ζ η+ = ,                                                (20) 

and 

2 2 0y
y z x

du
P E

dz
ζ ω

⎛ ⎞
+ − − =⎜ ⎟

⎝ ⎠
,                                     (21) 

where yu  is the y-velocity component, xω  is the x-spin velocity 
component, zE  is the z-component of the applied DC electric 
field, and yP  and zP  are the retarding polarization components 
in the y- and z- directions, respectively. Note that we have 
substituted the total polarization, tyP , with the retarding 
polarization, yP , in (21). This is because the DC electric field is 
applied in the z-direction only with 0yE = . Thus the total 
polarization in the y-direction comes from the dipole moment 
tilt of the rotating micro-particles in the micro scale, which, on 
the macroscopic level, is generally the y-component of the 
retarding polarization [34]. Finally, the z-linear momentum 
equation reduces to an equation which relates only the pressure 
gradient to the dielectric body force, and thus can be treated 
separately from the other equations. 
    Substituting (17) into (19), we can solve for the y- and z- 
components of the retarding polarization as 

 
FIG. 2.  The schematic diagram illustrating the geometry, dimensions, and 
physical parameters for Couette flow with internal particle electrorotation.
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,                                                    (22a) 

02 21
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+
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where 
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=
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,                  (23) 

with Ω  given in (15). We substitute (22a) into (21) and 
recognizing that the macroscopic (averaged) field and is related 
to the microscopic electric field through 

( ) ( )†
6 3 0 6 33 3

3 3
y z z y zE E a i a i E i a i a i

R R
φ φ= − + = − + ,               (24) 

as derived by Cebers [34], we approximate to the first order of 
magnitude of the volume fraction, φ  ( ( )3 3nR nd O φ∼ ∼  as in 

(16)), †
0z z zE E i E E i= ≈ =  for dilute suspensions (using this 

approximation, we decouple the electrical field equations, 
(6)-(7), from the mechanical field equations, (2)-(4)). Hence the 
governing equations specific to the Couette flow geometry with 
internal particle electrorotation is obtained as 

2

22 0yx
e

d ud
dz dz
ω

ζ η+ = ,                                                (20) 

and 
*

2
02 2 2 2 0

1
yMW x

z x
MW x

du
n E

dz
α τ ω

α ζ ω
τ ω

⎛ ⎞−
+ − − =⎜ ⎟+ ⎝ ⎠

.                   (25) 

with *
y zα α α= . The boundary conditions for the velocity field, 

yv u= yi , is the general no-slip boundary condition, i.e., 0v =  

at 0z =  and 0v U= yi  at z h= . On the other hand, the angular 
momentum equation, (25), eventually reduces to an algebraic 
equation for zero spin viscosity conditions as will be discussed 
shortly in Section III.B; hence, there are no additional 
constraints to be applied at the boundaries for the Couette spin 
velocity field. This “free-to-spin” condition on xω  for ' 0η =  is 
likely an analogous case to the Euler equation for inviscid fluid 
flow—the linear flow velocity is allowed to slip at the 
solid-fluid boundaries when the fluid viscosity goes to zero. 
 

B. Solutions to the Spin Velocity and the Effective Viscosity 
Integrating (20) with respect to z, we have 

2 y
x e c

du
C

dz
ζω η+ = ,                                                              (26) 

where cC  is a constant. Substituting (26) into (25), we find that 
the spin velocity, xω , does not depend on the spatial coordinate, 
z, and therefore (20) reduces to the original governing equation 
for simple Couette flow, i.e., 

2

2 0yd u
dz

= ,                                                                              (27) 

and the solution to (27) is 

( ) 0
y

U
u z z

h
= .                                                                      (28) 

Inserting (28) into (25) and using the following 
non-dimensionalization scheme, namely, 

*
xMWω τ ω= , * 0

MW
U
h

γ τ= , and *
2
0

2

z MW

M
n E

ζ
α τ

= ,            (29) 

the non-dimensional angular momentum equation is obtained 
as 

* * *
*3 *2 *

* *

11 0
2 22 2M M

γ γ αω ω ω
⎛ ⎞⎛ ⎞+ + + + − =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
.                (30) 

    Equation (30) can be solved to obtain analytical expressions 
by symbolic calculation packages (Mathematica, Wolfram 
Research, Inc.) and the three roots of (30) are expressed as 
functions of *γ  and *M . Nevertheless, it should be pointed out 
that not all the three roots to *ω  are likely to be physically 
meaningful and interpretable for the flow phenomena of 
interest presented herein. In order to find the most physically 
meaningful and interpretable solution or combination of 
solutions from the three (at most) possible solutions to the 
current problem, the following considerations and conditions 
are applied to the flow field: (i) the ER fluid is “free-to-spin” at 
the solid-ER fluid boundaries since the governing physics 
reduce from a boundary value problem to an algebraic problem 
in zero spin viscosity flows and (ii) the micro- particle angular 
velocity, Ω , [7]-[12] and subsequently the macroscopic fluid 
spin velocity, ω , rotate in the same direction as that of the 
macro scale flow vorticity so that the particle and ER fluid 
rotation is always stable. We have shown that the spin velocity 
is a constant throughout the channel when ' 0η =  in the Couette 
geometry. Hence, *ω  assumes some finite value at the 
solid-ER fluid boundaries, which is readily self-consistent with 
the “free-to-spin” condition. To satisfy condition (ii), we need 
to single out the solution to *ω  (or xω ) that has the same 
negative sign (or clockwise rotation) as the macroscale Couette 
flow vorticity, namely, ( )y xv du dz i∇ × = −  ( )0 xU h i= − , with 
the coordinate system defined in Fig. 2. We also pick the 
negative valued solution for the particle rotation speed, Ω , 
given in (15) and substitute Ω  into (17) and (23) to solve (30). 
For the parametric regimes of our interests, we identify the 
stable solution to the spin velocity as (solved by Mathematica 
under “Solve” command) 

( ) ( )
( )( )

11*
3* * 3 23

2 1 2 1 2

1
33 2

2 1 2*3

1 3 6 4 4
6

1 1 3 4
12 2

C C C C C

C C C

i M

i
M

γω ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

−
⎡ ⎤

= − − + + +⎢ ⎥
⎣ ⎦
⎡ ⎤

+ − + +⎢ ⎥
⎣ ⎦

,       (31) 

for 0 cE E≥ , and 
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( )
( )

11*
3* * 3 23
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1
33 2

2 1 2*3

3 4 4
6

1 4
6 2

C C C C C

C C C

M

M

γω ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

−
⎡ ⎤

= − + + +⎢ ⎥
⎣ ⎦

− + +

,        (32) 

for 0 cE E< , where 
* *2 *2 *2

1 6 12C M M Mϕ γ= + − ,                                              (33) 
and 

*2 * *3 * *3 *3 *2 *
2 18 72 2 108C M M M Mϕ γ γ γ α= − + + − .          (34) 

Notice that in evaluating solution in the regime of 0 cE E< , the 
micro-particle rotation speed, Ω , is set to zero in (17) and (23) 
since for 0 cE E< , (15) will give an imaginary value to the 
particle rotation speed. 
    The effective viscosity of Couette flows with particle 
electrorotation, effη , is derived by recognizing the relationship 
between the wall shear stress, sτ , and the average shear rate (or 
the velocity of the upper plate, 0U , divided by the channel 
height, h ) when the shear stress is held constant for a given 
flow or experimental condition, i.e., 

*
0

s eff eff z y
MW

U
i T i

h
γτ η η

τ
= = = ⋅ ⋅c fd gd ge h ,                                   (35a) 

in which a b  denotes the shear stress differences across the 

solid-liquid interface and s aT T T= +  is the total stress tensor 
with the symmetric part being 

( )t

sT pI v vη ⎡ ⎤= − + ∇ + ∇⎢ ⎥⎣ ⎦
,                                       (35b) 

and the antisymmetric part being 

( )2aT vζ ε ω= ⋅ ∇× − ,                                               (35c) 

[21]. By expanding the total stress tensor into matrix form and 
substituting the velocity field, (28), and the spin velocity field, 
(31) or (32), into (35), the effective viscosity can be obtained as 

*

*2eff e
ωη η ζ
γ

= + ,                                                      (36a) 

or in dimensionless terms, 
*

*
*

2eff e Ciη η ωζη
η η η γ

≡ = + ,                                        (36b) 

where * *
1Ci Cω ω=  or *

2Cω  depending on the electric field strength 
and ( )0 1 2.5η η φ≈ +  is the zero field ER fluid (particle-liquid 
mixture) viscosity as defined in Section II.A. The shear stress 
differences in (35a) are all evaluated at 0z =  in this article. 
 

C. Results and Discussions 
    After obtaining the velocity and spin velocity fields as well 
as the effective viscosity, we now further present the numerical 
evaluations of the analytical expressions given in (31), (32), 
and (36). The system parameters, physical constants, and 
material properties used in our evaluations follow those given 
in [7]-[12] so as to facilitate a more effective comparison 
between the current continuum model and the two-phase 
effective continuum formulations found in the literature. These 
data are summarized in Table II. 

     Shown in Fig. 3 is the Couette spin velocity, *
MW xω τ ω= , 

given by (31), i.e., * *
2Cω ω= , for 0 cE E≥  (with the particle 

rotation speed Ω  chosen to be negative in (15), (17), and (23)) 
and by (32), i.e., * *

1Cω ω= , for 0 cE E<  (with Ω  set to zero in 
(17), (23)) plotted with respect to the average shear rate, 

*
0MWU hγ τ= , evaluated at *

0 cE E E= = 0, 0.4, 0.8, 1.0, 2.0, 
and 3.0 where 61.3 10cE = ×  ( 1Vm− ) is the critical electric field 
for the onset of particle Quincke rotation evaluated by (1) with 
the material properties given in Table II. The negative values of 

*ω  given in the figure indicate that the ER fluid rotates or spins 
in the same clockwise direction (i.e., -x-direction of the 
coordinate system shown in Fig. 2) as that of the macroscale 
Couette flow vorticity so that the stable rotation condition can 
be satisfied. Moreover, it is learned from Fig. 3 that the 
magnitude of the spin velocity within the flow field increases as 
the applied electric field strength is increased with *γ  kept 
constant. On the other hand, the fluid spin magnitude also 
increases as the average shear rate, *γ , or the applied velocity 
of the upper boundary, 0U , increases while the field strength is 
kept constant. As the applied electric field, 0E  or *E , is 
reduced to zero, the ER fluid spin velocity reduces back to the 
angular velocity of a continuum fluid parcel, i.e., * *

0 2ω γ= − , 
half of the Couette flow vorticity which can be readily deduced 
from (30) by letting *M → ∞  or 0 0E → . This solution is noted 
by the gray line with * 0E =  in Fig. 3. 
     Notice that for a given field strength and shear rate, the spin 
velocity, *ω  or xω , is a constant throughout the channel and, 
thus, does not depend on the spatial z-coordinate as already 
discussed in Section III.B for the Couette geometry. With the 
spin velocity being a constant in (20), the velocity field of 
Couette flow with internal particle electrorotation is found to be 
the same as that of Couette flow without particle 
electrorotation—a result consistent with those given in 
Shliomis [38] and Rosensweig [21]. Thus, the velocity field of 
Couette flow with particle electrorotation is not further 

TABLE II 
SYSTEM PARAMTERS, PHYSICAL CONSTANTS, AND MATERIAL 
PROPERTIES USED IN THE NUMERICAL CALCULATIONS [7]-[12] 

Item Description Value Units 
d  Micro-particle diameter 58.00 10−×  m  

cE  Critical electric field strength 61.30 10×  1V m−⋅  
h  Channel height 31.00 10−×  m  
n  Particle number density 113.73 10×  3m−  

1ε  Permittivity of carrier liquid 113.27 10−×  2 1 2C N m− −

2ε  Permittivity of particles 112.30 10−×  2 1 2C N m− −

φ  Solid volume fraction of the particles 11.00 10−×  -- 

0η  Carrier liquid viscosity (no particles) 21.20 10−×  Pa s⋅  
'η  Spin viscosity 0  N s⋅  

η  Zero field fluid viscosity (w/ particles) 21.53 10−×  Pa s⋅  

eη  eη η ζ= +  21.76 10−×  Pa s⋅  

1σ  Conductivity of the carrier liquid 84.00 10−×  1S m−⋅  
2σ  Conductivity of the particles 141.00 10−×  1S m−⋅  

MWτ Maxwell-Wagner relaxation time 31.11 10−×  s  
ζ  Vortex viscosity 31.80 10−×  Pa s⋅  
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presented herein since plots of the linear profile given by (28) 
can be easily found in standard fluid mechanics text books. 
     Figure 4 shows the effective viscosity, *

effη η η= , of 
Couette flow with internal particle electrorotation as given in 
(36). The effective viscosity is plotted with respect to the 
average shear rate, *γ , with the electric field strength being 
evaluated at *E = 0, 0.4, 0.8, 1.0, 2.0, and 3.0. It is readily seen 
that the effective viscosity decreases as the applied DC electric 
field strength increases. However, as the magnitude of the shear 
rate increases, the amount of reduction in the effective viscosity 
decreases regardless of the applied electric field strength. We 
further point out that since the effective viscosity is normalized 
and non-dimensionalized by the ER fluid viscosity when no 
electric field is applied, the value of *η  should approach to one 
as the applied electric field goes to zero, which is a result easily 
found by substituting * *

0 2ω γ= −  into (36). The zero electric 
field result is indicated by the gray line in Fig. 4. It can be seen 
from the figure that the predicted effective viscosities *η  
approach to one when the shear rate, *γ , goes large or the 
applied electric field goes to zero. 
     From Fig. 4, we find that zero or negative viscosities are 
attainable when the applied DC electric field strength is strong 
enough. By using the terms “zero or negative viscosities,” we 
do not mean that the true fluid viscosity is zero or negative, but 
that the effective or apparent viscosity mathematically sums up 
to be zero or a negative value through performing the force 
balance described by (35) and (36) when the boundary shear 
stress, sτ , is maintained a constant. In experimental terms, as 
the applied electric field strength goes large, the “pumping” or 
“conveyer belt” effect of the micro-particles undergoing 
electrorotation on the fluid continuum becomes so significant 
that the ER fluid spin or rotation itself, instead of some 
externally applied force or torque, provides the shear stress 
required to move the upper plate of the Couette geometry. 
Therefore, we observe a finite shear rate, *γ , or plate velocity, 

0U , while the readings on the rheometer indicate a zero torque 
applied to the fluid. For the negative effective viscosity 
conditions, the electrorotation pumping is even more 
significant that the rheometer eventually has to “pull back” the 
upper plate to observe a certain finite value of shear rate or plate 
velocity. Further discussions can be found in Lobry and 
Lemaire [7] for the experimental considerations and in Zahn 
and Greer [39] and Zahn and Pioch [40]-[41] for explanations 
of positive, zero, and negative viscosity measurements. 
    The effective viscosity solution given in the present 
continuum model can be compared with the results found in 
Pannacci et al. [11] and Lemaire et al. [12] by using the same 

8
1 1.5 10σ −= ×  ( 1Sm− ) for the carrier liquid conductivity and 

other material parameters given in the two references for the 
numerical calculations. We find that the continuum model 
predicted effective viscosity varies in a similar trend with 
respect to *γ  or *E as compared with Fig. 2 in Pannacci et al. 
and Figs. 7(a) and 7(b) in Lemaire et al.. Unlike the model 
based on single particle dynamics in the two references which 
over estimates the reduction in effective viscosity, the present 
continuum model under estimates the reduction in *η  at high 
shear rates and electric field strengths, but falls closer to the 

experimental data shown in their work at relatively moderate 
shear rates and field strengths. 

 

IV. POISEUILLE FLOW WITH INTERNAL PARTICLE 
ELECTROROTATION 

A. The Governing Equations Specific to the Poiseuille Flow 
Geometry 

    Figure 5 shows the schematic diagram of a parallel plate 
Poiseuille flow. Instead of an upper plate moving at a constant 
velocity 0U , the upper and lower plates are now both fixed at 
zero velocity, and a pressure gradient, p yΓ ≡ −∂ ∂ , is applied in 
the positive y-direction, i.e., 0Γ > , through the channel to drive 

FIG. 3.  The Couette spin velocity, *ω , plotted with respect to the average 
shear rate, *γ , evaluated at *E = 0, 0.4, 0.8, 1.0, 2.0, and 3.0. For * 1.0E ≥ , 

the spin velocity given by (31), i.e., * *
2Cω ω= , and a negative valued Ω  from 

(15) is used in the evaluation, whereas * *
1Cω ω=  given by (32) is employed 

for cases of * 1.0E <  with the micro-particle rotation speeds be set to zero in 
(17) and (23). The gray line denotes the zero electric field spin velocity, 
namely, half of the ER fluid vorticity. 
 

FIG. 4.  The effective viscosity, *η , found for Couette flow plotted with 
respect to the average shear rate, *γ , evaluated at *E = 0, 0.4, 0.8, 1.0, 2.0, 
and 3.0. For * 1.0E ≥ , the spin velocity given by (31), i.e., * *

2Cω ω=  (with 

0Ω <  from (15) used in (17) and (23)) , is used in the evaluation of (36), 
whereas * *

1Cω ω=  given by (32) is employed in (36) for cases of * 1.0E <  
with the micro-particle rotation speeds be set to zero in (17) and (23). The 
gray line denotes the zero electric field value of the effective viscosity, 
which is given by η  in Table II. 



2009 Electrostatics Joint Conference, Session 1: Particles in Flows & Flow Electrification, Paper #1.3 9

the fluid flow. Based on the similar geometries given for both 
Couette and Poiseuille cases, we again assume that the flow is 
steady, incompressible, two-dimensional, and fully developed 
so that the z-velocity component, zu , is identically zero and 
that the applied pressure gradient, Γ , is at most a constant for a 
fully developed flow. The applied DC electric field is further 
approximated to be only in the z-direction with 0zE E=  and 0E  
being a constant across the channel height, h . 
    For zero spin viscosity conditions, (3), (4), and (18) then 
reduce to (19), (21), and 

2

22 0yx
e

d ud
dz dz
ωζ ηΓ + + = .                                        (37) 

After substituting (17) into (19) and solving (19a) and (19b), we 
again arrive at (22) and (23). Using (22a) in (21), we obtain the 
following set of governing equations for Poiseuille flow with 
internal particle electrorotation, that is, 

2

22 0yx
e

d ud
dz dz
ωζ ηΓ + + = .                                        (37) 

and 
*

2
02 2 2 2 0

1
yMW x

z x
MW x

du
n E

dz
α τ ω

α ζ ω
τ ω

⎛ ⎞−
+ − − =⎜ ⎟+ ⎝ ⎠

.                   (25) 

Since we are considering zero spin viscosities in the angular 
momentum equation, the spin velocity field, xω ω= xi , again 
follows the “free-to-spin” condition at the boundaries while we 
apply the no-slip BC, 0v = , at 0z =  and h  on the velocity 
field, ( )yv u z= yi . Yet, for a Poiseuille geometry, the spin 
velocity is no longer a constant throughout the flow field, i.e., 

( )x zω ω= xi , and thus an approximate condition for the spin 

velocity field, namely, 0ω →  and 0Ω → , is needed as 
2z h→  [22] in order to satisfy the symmetry requirements, 

additional to the stability and “free-to-spin” conditions, of the 
spin velocity field as will be discussed in the next subsection. 
 

B. Solutions to the Velocity Profile, Spin Velocity Profile, 
and the Volume Flow Rate 

    Following a similar procedure to that of the Couette 
geometry case, we integrate (37) to have 

2 y
x e p

du
z C

dz
ζω ηΓ + + = ,                                                   (38) 

where pC  is a constant. Equation (38) is then substituted into 
(25) so that the angular momentum equation becomes 

*
2
02 2

22 2 0
1

pMW x
z x x

e e eMW x

C
n E z

α τ ω ζα ζ ω ω
η η ητ ω

⎛ ⎞− Γ
+ + − − =⎜ ⎟+ ⎝ ⎠

.   (39) 

Recall that in order to satisfy the particle and ER fluid stable 
rotation condition as discussed in Section III.B, the suspended 
micro-particles [7]-[12] and subsequently the ER fluid need to 
rotate in the direction of the macroscale flow vorticity, which in 
this case, should be the Poiseuille flow vorticity direction. 
Based upon this argument and with reference to the coordinate 
system shown in Fig. 5, it is argued that the particle rotation, Ω , 
and the subsequent fluid spin, xω , directions in the lower half 
of the channel, i.e., 0 2z h≤ < , are to be clockwise or pointing 
into the plane (negative). As for the other half of the channel, 
i.e., 2h z h< ≤ , the directions of the particle rotation, Ω , and 
fluid spin velocity, xω , are required to be counter clockwise or 
pointing out of the plane (positive). Hence, the plane “ 2z h= ” 
becomes a plane of symmetry, and the ER fluid spin velocity 
and particle rotation goes to zero, that is, 0xω →  and 0Ω →  as 

2z h→ , in this symmetry plane [22]. For simplicity, we shall 
denote this symmetry condition as 0x xiω ω= =  and 0xiΩ = Ω =  
at 2z h=  henceforward. By applying this symmetry condition 
to (39), the constant pC  is determined to be 2hΓ , and (39) is 
rewritten as 

2*
0

2 2
1 2 0

2 21
zxMW

x
e exMW

n E h z
h

αα τ ω η ω
ζ η ητ ω

⎛ ⎞
⎜ ⎟
⎝ ⎠

− Γ+ − − =
+

,                     (40) 

which is an algebraic, cubic equation with the z-coordinate 
being a spatially varying coefficient and *

y zα α α= . 
    Using the following non-dimensionalization scheme, 
namely, 

*
MW xω τ ω= , * zz

h
= , *

2
0

2

z MW e

m
n E

ζη
α τ η

= , and * *MWhV mτ
η

Γ
= , (41) 

(40) is non-dimensionalized and the dimensionless angular 
momentum equation for the Poiseuille case becomes 

* * *
*3 * *2 * *

* * * *

1 1 11 0
2 2 2 2 2 2
V Vz z
m m m m

αω ω ω⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − + + − − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.     (42) 

We solve (42) by standard symbolic calculation packages 
(Mathematica, Wolfram Research, Inc.) to express *ω  in terms 
of *V , *z , and *m , or equivalently, to express xω  in terms of z , 
Γ , and 0E . Next, the stability, symmetry, and “free-to-spin” 
conditions are applied to rule out the most physically 
meaningful solution to the spin velocity, *ω , out of the three 
possible solutions found from solving the angular momentum 
equation, (42). According to the stability and symmetry 
conditions as discussed previously, the spin velocity and 
particle rotation need to be positive in *0.5 1z< ≤ , negative in 

*0 0.5z≤ < , and zero at * 0.5z =  with *z z h= . From this 
reasoning, the explicit expression of the final solution to the 
spin velocity of Poiseuille flow with internal particle 
electrorotation is given for 0 cE E≥  as (solved by Mathematica 

FIG. 5.  The schematic diagram illustrating the geometry, dimensions, and 
physical parameters for Poiseuille flow with internal particle 
electrorotation. 
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under “Solve” command): (i) for *0.5 1z< ≤ , we pick positive 
Ω  in (15) and substitute into (17) and (23) to have 

( )
( )

11* * *
3* * 2 33

1 1 2 2 1*

1
32 3

2 2 1*3

2 6 4 4
12

1 4
12 2

P P P P P

P P P

V z V m
m

m

ω ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

−
⎡ ⎤−

= + + +⎢ ⎥
⎣ ⎦

− + +

,                 (43) 

(ii) for * 0.5z = , 
*

3 0Pω =  ( 0Ω = ),                                                            (44) 
and (iii) for *0 0.5z≤ < , we pick negative Ω  in (15) and have 

( ) ( )
( )( )

11* * *
3* * 2 33

2 1 2 2 1*

1
32 3

2 2 1*3

2 1 3 12 4 4
12

1 1 3 4
24 2

P P P P P

P P P

V z V i m
m

i
m

ω ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

−
⎡ ⎤−

= − + + +⎢ ⎥
⎣ ⎦
⎡ ⎤

+ − + +⎢ ⎥
⎣ ⎦

,      (45) 

where 
( ) ( )2* * * * *

1 24 1 2 2P m m V z Vϕ = + − − ,                                              (46) 
and 

* * *2 * *3 * * *
2

*2 * * *3 * *3 *2 *3 *3 *2 *

72 288 2 144

576 12 24 16 864
P m V m V V m V z

m V z V z V z V z m

ϕ

α

= − + + +

− − + − −
.      (47) 

Notice that the solution given to (42) should always be real 
valued within our parametric range of interest since there is 
generally no physical meaning for a solution being complex 
valued. Moreover, the combination of solutions, i.e., (43), (44), 
and (45), presented herein is for the general parametric range of 
electric field strengths *

0 1cE E E= ≥ . For other parametric 
regimes, the combination of solutions may be different from the 
one presented herein, e.g., (43) is generally uniformly valid for 
the case of 0 cE E<  throughout *0 1z≤ ≤  (with 0Ω =  in (17) 
and (23)). In this latter case, we need to start from (42) and 
solve for the three roots, then apply the stability, symmetry, and 
“free-to-spin” conditions to the solutions, and finally rule out 
the suitable combination for the desired spin velocity field just 
as the procedure we have shown to find the combination of (43), 
(44), and (45). Also notice that the jump or discontinuity made 
in the final spin velocity profile at * 0.5z =  is permitted 
self-consistently by the “free-to-spin” condition for the zero 
spin viscosity cases studied herein. This is an analogous 
situation to the “inviscid” parallel shear flow with the velocity 
field being yv U i=  for 0z >  and yv U i= −  for 0z <  as one of 
the possible base solutions to Kelvin-Helmholtz instability 
studies. 
    Having (43), (44), and (45) combined, we can easily express 
the dimensional spin velocity in either ( )x x zω ω=  or 

( )*
x x zω ω=  forms by dividing *ω  with the Maxwell-Wagner 

time, MWτ . After substituting xω  and 2pC h= Γ  into (38) and 
also noticing that xω , for * 1E ≥ , is expressed by (43) and (45) 
in the respective regions of *0.5 1z< ≤  and *0 0.5z≤ < , we 
integrate (38) with respect to z to obtain the velocity field as: (i) 
for *0.5 1z< ≤ ,  

( ) ( ) m( ) m
*

1* * * * * * *
1

41UP Pze MW
u z z z z d z

h
η ζ ω
η τ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= − +
Γ ∫ ,        (48a) 

and (ii) for *0 0.5z≤ < , 

( ) ( ) m( ) m*
* * * * * * *

20

41
z

DN P
e MW

u z z z z d z
h

η ζ ω
η τ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= − −
Γ ∫ ,       (48b) 

where the velocity field, (48), is made dimensionless by 
dividing both (48a) and (48b) with 2 2h ηΓ  (note: use η  not 

eη ), i.e., ( ) ( )* * * 22 yu z u z hη= Γ , *
1Pω  and *

2Pω  are respectively 

defined in (43) and (45), and l*z  is a dummy index in both 
equations (for * 1E <  use *

1Pω  throughout *0 1z≤ ≤  in the 
integration of (48)). From both mathematical and physical point 
of views, the velocity field or distribution of the flow, yu , needs 
to be continuous and smooth (continuous in ydu dz ) 
throughout the channel because of finite ER fluid viscosities, η . 
However, since we have manually (with physical reasoning) 
made the spin velocity, xω , discontinuous at the middle of the 
channel, the smoothness of the velocity distribution near 

* 0.5z =  may not exactly be preserved under the framework of 
zero spin viscosity limits—a cusp may arise at * 0.5z =  in the 
velocity profile given by (48) for certain parametric regimes of 
interest. The velocity and spin velocity profiles for the 
Poiseuille geometry found in this subsection will be evaluated 
numerically and presented graphically in Section IV.C to 
further illustrate these issues. 
     We next calculate the two dimensional volumetric flow rate, 
Q , by integrating the velocity fields, i.e., 

( ) ( ) ( )
3 0.5 1* * * * * *

0 0 0.52
h

y DN UP
hQ u z dz u z dz u z dz
η

⎡ ⎤
⎢ ⎥⎣ ⎦

Γ= = +∫ ∫ ∫ ,     (49) 

with (48a) used for *0.5 1z< ≤  and (48b) used for *0 0.5z≤ < . 
In terms of the spin velocities, (49) is rewritten as 

l( ) l l( ) l*

*

3

1 1 0.5* * * * * * * *
1 20.5 0 0

12

241

e

z

P Pz
MW

hQ

z d z dz z d z dz
h

η
η η

ζ ω ω
τ

⎛ ⎞⎛ ⎞Γ
= ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎧ ⎫⎪ ⎪⎡ ⎤+ −⎨ ⎬⎢ ⎥Γ ⎣ ⎦⎪ ⎪⎩ ⎭

∫ ∫ ∫ ∫
,      (50) 

where l*z  is the dummy index and (43) and (45) are used in the 
integration ranges of *0.5 1z< ≤  and *0 0.5z≤ < , respectively. 
Again, for * 1E < , use *

1Pω  throughout *0 1z≤ ≤  in the 
integration of (49) or (50). It is now obvious why we use η , ER 
fluid viscosity when no electric field is applied, instead of 

eη η ζ= +  in non-dimensionalizing the velocity field of (48). 
The intention is to utilize the ordinary Poiseuille flow solution 
(no electric field applied to the ER fluid) as a reference datum 
so that the variation and deviation of the electrorotation 
modified Poiseuille velocities and flow rates from those of the 
zero electric field solution, i.e., ( ) ( ) ( )* * 2 *

0 2 yu z h u zη= Γ  

( )* *1z z= −  and 3
0 12Q h η= Γ , respectively, can be clearly and 

effectively compared. 
     Results of the velocity/spin velocity profiles and the volume 
flow rate will be respectively presented in the following 
subsection. The system parameters, physical constants, and 
material properties used in the numeric evaluations can be 
found in Table II unless otherwise specified. 
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FIG. 6.  The Poiseuille spin velocity profile (normalized), j*ω , plotted with respect 
to the spatial coordinate, *z , evaluated at *E = 0, 0.4, 0.8, 1.0, 2.0, and 3.0, with 

* 1Γ = . The gray curve denotes the zero electric field value for the spin velocity, 
i.e., the vorticity of ordinary Poiseuille flow. For * 1E ≥ , (43)-(45) are used in the 
evaluation, whereas for * 1E < , (43) is used throughout the spatial domain of 
interest. 
 

FIG. 7.  The linear velocity profile (normalized), *u , of Poiseuille flow with 
internal micro-particle electrorotation plotted with respect to the spatial 
coordinate, *z , evaluated at *E = 0, 0.4, 0.8, 1.0, 2.0, and 3.0, with * 1Γ = . The 
gray curve denotes the zero electric field value for the velocity profile, which is the 
original Poiseuille parabolic profile. Equations (43) (with a positive valued Ω  
from (15) used in (17) and (23)) and (45) (with a negative valued Ω  from (15) 
used in (17) and (23)) are respectively used in the integrals of (48a) and (48b) for 

* 1E ≥ . The evaluation for * 1E <  is done by employing (43) in both (48a) and 
(48b). 

C. Results and Discussions 
    Before presenting the spin velocity profiles, we first 
normalize the Poiseuille spin velocity, (43), (44), and (45) by 

2MWhτ ηΓ , namely, j j* * *
1 12P P MWhω ω ηω τ= = Γ  for *0.5 1z< ≤ , 

j k* * *
2 22P P MWhω ω ηω τ= = Γ  for *0 0.5z≤ < , and j k* *

3Pω ω= =  
*

32 0P MWhηω τΓ =  for * 0.5z = . By employing this normalization, 
we find that the zero electric field solution, 

( )* *
0 0.5 2MWh zω τ η= Γ − , becomes independent of the applied 

pressure gradient and only depends on the spatial position in the 
channel, i.e., j ( )* *

0 0.5zω = − . The zero electric field solution 
then becomes a reference datum invariant of both the applied 

electric field strength and the driving pressure gradient and 
facilitates a more physically meaningful comparison among the 
solutions. 
     Illustrated in Fig. 6 are the spatial variations of the 
electrorotation assisted Poiseuille spin velocity profiles given 
by (43), (44), and (45) normalized by 2MWhτ ηΓ  plotted with 
respect to distinct strengths of the applied electric field, 

*
0 cE E E= . With the pressure gradient kept constant, i.e., 

* 1rΓ = Γ Γ =  where 42 10rΓ = ×  ( 1Pa m−⋅ ), the normalized spin 

velocity j*ω  is evaluated at *E = 0, 0.4, 0.8, 1.0, 2.0, and 3.0 
with 61.3 10cE = ×  ( 1Vm− ). The solid gray curve shown in Fig. 6 

represent the zero electric field solution, j ( )* *
0 0.5zω = − , or half 

of the Poiseuille vorticity when there is no electric field and 
internal particle electrorotation effects. From the figure, the 
positive and negative valued spin velocities found in the 
respective regions of *0.5 1z< ≤  and *0 0.5z≤ <  (with 
j k* *

3 0Pω ω= =  at * 0.5z = ) again verify that we have chosen, 
based on the macro Poiseuille vorticity directions, the 
combination of solutions that satisfies the symmetry as well as 
the stable particle and ER fluid rotation conditions. The 
apparent jump or discontinuity in the spin velocity profile at 

* 0.5z =  is self-consistently permitted by the “free-to-spin” 
condition under the framework of the zero spin viscosity limit 
as already mentioned in the previous sections. 
     As can be seen in Fig. 6, the magnitude of the normalized 
spin velocity of Poiseuille flow with internal particle 
electrorotation increases as the applied DC electric field 
strength is increased. If, on the contrary, we reduce the applied 
electric field strength from *E = 1.0, 0.8 to 0.4, we find that the 
spin velocity gradually approaches the zero electric field 
solution noted by the gray curve in Fig. 6. Moreover, the 
strength of the jump or discontinuity at * 0.5z =  in the 
normalized spin velocity field reduces and eventually smoothes 
out (see the smooth and continuous curves for * 0.4E =  and 0.8) 
as the applied electric field is decreased. Note that in this figure, 
the solutions for * 0.4E =  and 0.8 are fully represented by 
j j* *

1Pω ω= , i.e., (43), throughout the spatial domain, *0 1z≤ ≤ , at 
* 1Γ = . However, the spin velocity solutions for *E = 1.0, 2.0, 

and 3.0 are represented by j j* *
1Pω ω=  for *0.5 1z< ≤ , j k* *

2Pω ω=  
for *0 0.5z≤ < , and zero for * 0.5z =  at * 1Γ = . The transition 
among the braches of solutions again verifies the cubic nature 
of the governing equation, (42). 
    After the spin velocity field is found, the (linear) velocity 
field is easily obtained by integrating (48). The results of the 
velocity field, *u  (or yu ), are plotted with respect to the spatial 
coordinate *z  in Fig. 7 for * 1Γ =  with * 0E = , 0.4, 0.8, 1.0, 2.0, 
and 3.0. The gray solid curve represent the zero electric field 
solution, ( )* * *

0 1u z z= − , i.e., the velocity field of ordinary 
Poiseuille flow without internal particle electrorotation. Recall 
that the velocity field was already normalized by 2 2h ηΓ  in the 
non-dimensional definition of (48); hence, there is no more 
need to define a normalized velocity field as in the case of the 
spin velocity.      
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    Based upon the above convention, we find in Fig. 7 that with 
* 1Γ =  kept constant, the flow velocity is considerably 

enhanced and the cusp in the velocity profile at * 0.5z =  is 
sharpened as the strength of the applied DC electric field is 
increased. If we reduce the strength of the electric field while 
the pressure gradient is maintained constant, the cusp at 

* 0.5z =  becomes blunt and the electrorotation enhanced 
velocity profile gradually reduces and converges back to the 

* 0E =  solution, i.e., the parabolic Poiseuille flow velocity field 
without internal particle electrorotation as noted by the solid 
gray curve in the figure. The * 0.4E =  and 0.8 velocity fields 
shown is evaluated by substituting (43), i.e., *

1Pω , into the 
integrals of both (48a) and (48b) with 0Ω =  in (17) and (23) 
since in this parametric regime, *

1Pω  assumes a real value and is 
uniformly valid throughout the spatial domain of *0 1z≤ ≤ . 
The cusped velocity profile shown in Fig. 7 is similar to the 
velocity profiles of a power law fluid in circular pipe Poiseuille 
flow geometries for large power indices [42]. 
    Finally, using the physical parameters and material 
properties given in Table II, the two dimensional volume flow 
rate of Poiseuille flow with internal particle electrorotation, Q  
( 2 1m s− ), is plotted with respect to the driving pressure gradient, 

*
rΓ = Γ Γ  with 42 10rΓ = ×  ( 1Pa m−⋅ ), at distinct values of the 

applied DC electric field strength, *
0 cE E E=  with 

61.3 10cE = ×  ( 1Vm− ). The results are shown in Fig. 8 for *E = 0, 
0.4, 0.8, 1.0, 2.0, and 3.0 with the solid gray curve noted by 

* 0E =  corresponding to the two dimensional volume flow rate 
of Poiseuille flow without internal particle electrorotation, i.e., 

3
0 12Q h η= Γ .  

    From Fig. 8, we find that the volume flow rate increases as 
the applied DC electric field strength is increased while the 
driving pressure gradient is kept constant. On the other hand, 
the eletrorotation enhanced volume flow rate gradually 
converges back to the zero electric field solution, 3

0 12Q h η= Γ , 
as the applied electric field is reduced. These results are 
consistent with our previous examination of the velocity fields 
shown in Fig. 7 and agree with the experimental observations 

reported in [10]. Note that the flow rate solutions for *E =  1.0, 
2.0, and 3.0 suggest a non-zero flow rate at zero driving 
pressure gradients when the flow is subjected to an applied 
electric field larger than or equal to the critical electric field for 
the onset of Quincke rotation. This result is particularly due to 
the fact that we have used the combination of solutions of the 
spin velocity, (43), (44), and (45), that rotates in the same 
direction as the macroscale Poiseuille flow vorticity field in the 
modeling and evaluation of the volume flow rate, Q . 
Nonetheless we need to pointed out that unless there is some 
initial flow ( * 0Γ ≠ ) applied to give the suspended 
micro-particles and subsequently the ER fluid a favorable 
direction for electrorotation, the direction for Quincke rotation 
is merely a matter of chance with the particle rotation axis 
either pointing into or out of the planes defined by the electric 
field under zero flow or equivalently zero driving pressure 
gradient conditions. Up to this point, no experimental evidence 
has observed a finite flow rate for the ER fluid when 0 cE E>  
and the pressure gradient being zero [7]. This finite jump of 
volume flow rate at zero driving pressure gradients diminishes 
and eventually becomes zero, i.e., zero flow rate at zero 
pressure gradient, as we reduce the applied electric field 
strength from *E = 1.0, 0.8, to 0.4 as can be found in the figure. 
Again, for the *E = 0.4 and 0.8 solutions shown in Fig. 8, we 
have used *

1Pω  throughout the spatial domain, *0 1z≤ ≤ . 
    Last, we can compare the theoretical predictions of the 2D 
Poiseuille volume flow rate obtained from the present 
continuum model with the results given in Figs. 5 and 6 of 
Lemaire et al. [10]. By using the same material and physical 
parameters employed in [10], e.g., channel height 750h =  
( mµ ), electric field strengths of 0 2700E =  and 3300 ( 1V mm−⋅ ), 
solid volume fractions of 0.05φ =  and 0.1, etc., it can be found 
that the variation of the 2D volume flow rate with respect to *E  
and *Γ  predicted by the continuum model is similar to the 
predicted results obtained from models based on single particle 
dynamics given in [10]—the volume flow rate increases as the 
applied electric field increases. However, results from the 
present continuum analysis slightly over estimates the volume 
flow rate as compared to both experimental data and 
predictions single particle dynamics analysis. 
    Summing up the findings from examining Figs. 6, 7 and 8, it 
is found that, in general, the magnitude of the normalized spin 
velocity, the normalized flow velocity, and the 2D volume flow 
rate is increased as the applied electric field, *E , is increased 
with the driving pressure gradient, *Γ , kept constant. Moreover, 
increasing the applied electric field gives rise to a more severe 
jump or discontinuity at * 0.5z =  in the normalized spin 
velocity profile, sharpens the cusp structure at  * 0.5z =  in the 
(normalized) velocity profile, and results in a finite value of 
volume flow at zero pressure gradients. Contrarily, reducing 
the strength of the electric field smoothes out the cusp in the 
velocity profile and reduces the severity of the discontinuity at 

* 0.5z =  in the spin velocity field while the pressure gradient is 
kept constant. The (normalized) velocity and spin velocity 
profiles as well as the 2D volume flow rate gradually converge 
back to the zero electric field solutions as the applied electric 
field strength is reduced.  

FIG. 8.  The two dimensional Poiseuille volume flow rate, Q , plotted with 
respect to the applied pressure gradient, *Γ , evaluated at *E = 0, 0.4, 0.8, 1.0, 2.0, 
and 3.0. The gray curve represents the zero electric field volume flow rate given 
by 3

0 12Q h η= Γ . 
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    As a general conclusion of the results presented herein, we 
find that the fully continuum governing equations describing 
the internal particle electrorotation modified flow phenomena 
employed in this article reduces to a “particulate limit” and 
predicts similar trends of variation of the effective viscosities 
for Couette flow and the two dimensional volume flow rates for 
Poiseuille  flow as compared to the theoretic predictions from 
two-phase effective continuum (single particle dynamics based) 
models found in the literature when the spin viscosity, 'η , is set 
to be zero in the angular momentum equations. 
 

V. CONCLUDING REMARKS 
    Two dimensional Couette and Poiseuille flows with internal, 
spontaneous micro-particle electrorotation, or Quincke rotation, 
are modeled and analyzed through a fully continuum 
mechanical formulation in this article. By combining the 
theories of particle electromechanics and anti-symmetric 
stresses, general governing equations are given to describe the 
physical aspects of polarization relaxation, mass conservation, 
momentum conservation, and angular momentum conservation 
involved in this novel electrorheological phenomena. With the 
assumptions of steady, incompressible, fully developed, and 
two dimensional flow, the general governing equations are 
respectively reduced to two algebraic, cubic equations of the 
ER fluid spin velocity, *ω , for both Couette and Poiseuille 
geometries under the framework of a zero spin viscosity in the 
angular momentum equations. Stability, symmetry, and 
“free-to-spin” conditions are then applied to the cubic spin 
velocity equations to rule out the solution or combination of 
solutions consistent with the physical assumptions and 
phenomena of interest. Expressions of the linear velocity field, 

*u , and effective viscosity, *η , for Couette flow as well as the 
linear velocity and volume flow rate, Q , for Poiseuille flow can 
be further derived in terms of the applied electric field, *E , 
shear rate, *γ , driving pressure gradient, *Γ , or spatial 
coordinate, *z , by respectively substituting the most physically 
suitable and meaningful solution or combination of solutions to 
the spin velocity into the linear momentum equation with the 
no-slip boundary conditions on the velocity field applied at the 
spatial boundaries. The results are summarized in the 
following: 
(i) With internal particle electrorotation, the spin velocity, *ω , 

increases as either the applied electric field strength, *E , 
or the shear rate, *γ , is increased for Couette flow. 
Contrarily, the spin velocity reduces back to the zero 
electric field solution ( * 0E = , no particle electrorotation), 
i.e., * *

0 2ω γ= − , or half of the Couette flow vorticity, as the 
applied electric field strength is decreased. In the limit of 
zero spin viscosities, the linear Couette velocity profile, 

( ) 0yu z U z h= , remains invariant regardless of the applied 
electric field strength. 

(ii) The effective viscosity, *η , is found to decrease as the 
applied DC electric field strength increases for Couette 
flow with internal particle electrorotation. However, as the 
driving shear rate grows large, the amount of reduction in 
the effective viscosity is reduced regardless of the applied 

electric field strength. For a decreasing electric field 
strength, the effective viscosity converges back to the zero 
electric field solution, * 1η = , i.e., the viscosity of the ER 
fluid (particle-liquid mixture) when no electric field is 
applied. 

(iii) With a constant driving pressure gradient, *Γ , the 
magnitude of the normalized Poiseuille spin velocity, j*ω , 
as well as the jump or discontinuity in the spin velocity 
profile increases as the applied electric field, *E , increases 
whereas the spin velocity reduces back to the zero field 
solution, j ( )* *

0 0.5zω = − , and the discontinuity in the spin 

velocity profile diminishes as *E  is reduced. 
(iv) With a constant driving pressure gradient, *Γ , the 

magnitude of the dimensionless (normalized) Poiseuille 
linear velocity, *u , as well as the sharpness of the cusp in 
the velocity profile increases as the applied electric field, 

*E , increases. On the contrary, the velocity profile reduces 
back to the zero field solution, ( )* * *

0 1u z z= − , and the cusp 

in the velocity profile becomes blunt as *E  is reduced. 
(v) The two dimensional Poiseuille volume flow rate, Q , 

increases as the applied DC electric field strength increases 
whereas the electrorotation enhanced flow rate solution 
reduces back to the zero electric field solution, 

3
0 12Q h η= Γ , as the applied electric field is decreased. At 

zero driving pressure gradients, the electrorotation 
enhanced volume flow rate assumes some finite value 
because of the fact that we have employed the spin velocity 
solution that rotates in the same direction as that of the 
Poiseuille vorticity field in the evaluation of Q . 

(vi) Comparing the results of effective viscosity and volume 
flow rate obtained herein with those found in current 
literature, we find that both continuum and 
semi-continuum (single particle dynamics based) models 
qualitatively predict the same trends of variation for the 
effective viscosity with respect to the electric field strength 
and average shear rate, and for the volume flow rate with 
respect to the field strength and driving pressure gradient. 

    Future work includes a more advanced modeling of the 
polarization relaxation processes in the electrorheological fluid 
flow, the investigation of finite spin viscosity effects on the 
angular momentum balances within the flow field, and the 
search of possible practical applications for such novel negative 
electrorheological phenomenon. 
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