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Abstract—One type of AC electroosmotic micropumps is driven
by a low amplitude AC electric field imposed on systems of
co-planar electrodes. Interesting non-linear phenomena such as
flow reversals have been observed in experimental studies. The
value and the direction of the net velocity depends on the AC
electric field parameters, the microchannel geometry and other
parameters.

In this contribution, we present predictions of non-equilibrium
and equilibrium mathematical models describing electrolyte
transport in these AC micropumps. The classical equilibrium
approach is based on the use of the capacitor-resistor boundary
conditions for electric potential, the slip boundary conditions for
the velocity at electrode surfaces, and the Laplace, the Stokes
and the continuity equations. The non-equilibrium mathematical
model is based on the mass and momentum balances, the Gauss
law, and the non-slip boundary conditions.

We have found that both models predict almost the same
behavior of the AC micropumps in low amplitude regimes. If am-
plitude substantially exceeds the linearization limit (A ≫ 25mV),
the obtained results can qualitatively differ. Parametrical study
has revealed that there are

”
optimal“ AC frequency, the vertical

confinement of microchannels and the ratio between the size of
asymmetric electrodes to attain the maximal time averaged net
velocity.

I. I NTRODUCTION

A design of the AC electrokinetic micropumps was first
proposed by Ajdari [1]. The micropump can be constructed
by means of arrays of asymmetric pairs of co-planar micro-
electrodes deposited on a dielectric substrate. It was expected
that the asymmetry of the electric field will lead to a net flow
of the electrolyte. His predictions were verified by several
experimental and theoretical works, e.g., [2–6].

In the co-planar arrangement, the AC electric field imposed
on the microelectrodes has the tangential and the normal
components. The normal component induces electrode polar-
ization (capacitive charging). Then, the lateral component of
the electric field forces the amassed electric charge to move
along the electrodes. As the electric charge is formed by ions
of a non-zero diameter, the moving ionic particles pull the
surrounding liquid via viscous forces. Combination of the
coulombic, pressure and viscous forces in a liquid results
in the formation of eddies above the electrodes that were

experimentally observed by PIV techniques [3,4]. The system
asymmetry leads to an asymmetry of the eddies and finally to
a non-zero net velocity.

Mathematical models of AC electroosmosis have been de-
veloped. The computation domain is usually divided into the
capacitor domains (the electric double layers – EDLs) and
the resistor domain (electrolyte bulk). Then, the boundary
conditions for electric potential on the capacitor-resistor in-
terfaces can be derived. However, these boundary conditions
are valid only when a low voltage (amplitude< 25 mV)
is applied on the microelectrodes, i.e., the linearizationof
the Poisson-Boltzmann equation is justified [12]. Ones the
distribution of the electric potential at the capacitor-resistor
interface is evaluated, then velocity slip boundary conditions
on the electrode surfaces can be expressed by the Helmholtz-
Smoluchowski equation [7]. So, the transport (flow) problem
is solved independently only in the resistor domain represented
by the electrolyte bulk.

Alternative non-equilibrium models have been devel-
oped [10, 13, 14]. This approach allows analyzing the model
equations for voltages above the linearization limit (amplitude
≫ 25 mV) with non-equilibrated EDL. The non-equilibrium
models describe the distribution of electric potential with the
use of the Poisson equation and the molar balances of ions.
However, the flow problem has to be solved simultaneously.
The Navier-Stokes, the continuity equation and the zero (non-
slip) velocity boundary conditions are used.

II. M ATHEMATICAL MODEL

A. Micropump configuration

The co-planar arrangement of the AC electroosmotic pumps
is considered, Fig. 1. The studied microfluidic pump can be
represented by a single segment of a long microfluidic channel.
We assume that a microchannel consists of an infinitely large
series of the segment with periodic boundary conditions. We
assume that width of the microchannels is much larger than
the characteristic dimensions of the segments, so the AC
electroosmotic pumps can be described as two-dimensional



H

y

x

y

ReG2/2

L

Le G1 G2/2

Fig. 1. Scheme of one segment of the AC electroosmotic micropump.
Dashed-dotted lines indicate the periodic boundary conditions.

objects of lengthL and heightH . The electrodes have length
Le andRe and are separated by two gapsG1, G2.

A symmetric mono-monovalent water electrolyte (e.g.,
potassium chloride) is considered as the fluid in microchan-
nels. No changes of density, viscosity and temperature are
expected. No faradaic reactions are assumed on the electrodes.
Formation of the Stern part of EDL or condensed EDL is not
considered in this study.

B. Non-equilibrium approach

The model equations are transformed into a dimensionless
form. The spatial coordinates and dimensions the pump and
EDL thickness are scaled by the factorL :

x̃ =
x

L
, ỹ =

y

L
, λ̃D =

λD

L
,

where the Debye length (λD) is defined by

λ2
D =

εRT

2 c◦F 2
,

The characteristics dimensions were transformed to dimen-
sionless form. The dimensionless height of the channel, the
ratio between electrode sizes, the ratio of the gap sizes and
the relative ratio of electrode and nonelectrode domains are
defined by

h̃ =
H

L
, l̃ =

Le

Re

, g̃ =
G1

G2

, l̃e =
Le +Re

L
.

The dimensionless timẽt and the frequencỹf are given by

t̃ =
t

t◦
, t◦ =

λDL

D
, f̃ = f t◦ .

The other dimensionless quantities are defined by

q̃ =
(c+ − c−)

2 c◦
, c̃ =

c+ + c−

2 c◦
,

ϕ̃ =
ϕ

ϕ◦

, ϕ◦ =
RT

F
, ψ̃ =

ψ

ϕ◦

, Ã =
A

ϕ◦

,

ṽ =
v

D/L
, p̃ =

p

2 c◦RT
.

The velocity and pressure fields in the electrolyte are described
by the Navier-Stokes equation and the continuity equation for
an incompressible Newtonian fluid

1

Sc

(

∂ ṽ

∂ t̃
+ λ̃Dṽ · ∇̃ṽ

)

=

= λ̃D∇̃2
ṽ +

Ra

λ̃D

(

−∇̃p̃− q̃∇̃ϕ̃
)

, (1)

∇̃ · ṽ = 0 . (2)

where Sc is the Schmidt number and Ra is the Raleygh number
defined by

Ra =
ε

ηD

(

RT

F

)2

, Sc =
η

ρD
.

The electric potential field satisfies the Poisson equation

∇̃2ϕ̃ = −λ̃−2
D q̃ . (3)

In order to evaluate the field of electric charge density, two
molar balances for the anion (-) and the cation (+) have to be
used. The total molar flux density of an ion is given by the
sum of the convective, the electromigration and the diffusion
contributions. Linear combinations of two molar balances
gives the equations for concentration and conductivity in the
dimensionless form.

∂ c̃

∂ t̃
= −λ̃D∇̃ ·

(

ṽc̃− ∇̃c̃− q̃∇̃ϕ̃
)

, (4)

∂ q̃

∂ t̃
= −λ̃D∇̃ ·

(

ṽq̃ − ∇̃q̃ − c̃∇̃ϕ̃
)

, (5)

The non-slip boundary conditions are used for all electrolyte-
solid interfaces

ṽ = 0 . (6)

Electric potential on the electrodes is given by

ϕ̃e
L = Ãsin(2πf̃ t̃) , ϕ̃e

R = 0 . (7)

The insulating boundary conditions are used for electric po-
tential on the non-electrode solid boundaries

n · ∇̃ϕ̃ = 0 . (8)

The spatially periodical solution is considered

ξ̃(x, y, t) = ξ̃(x+ L, y, t) , ξ̃ = ϕ̃, ṽ, p̃, c̃± , (9)

and thus the periodical boundary conditions atx = 0 andx =
L are applied.



C. Equilibrium approach

The equilibrium approach enables to decouple the electro-
static and the flow parts of the problem. The model equations
are transformed into a dimensionless form with the use of
same scaling factors as in previous section.

Electrical problem in electrolyte bulk is governed by
Laplace equation due to assumption of electroneutrality inthe
electrolyte bulk

∇̃2 ϕ̃ = 0 , (10)

The boundary conditions for electric potential are the sameas
in the non-equilibrium model except the electrode boundaries.
Here the capacitor-resistor boundary conditions are used [15,
16]

n · ∇ϕ̃ = −
∂

∂ t̃
(ϕ̃e − ϕ̃) (11)

Using complex formulation

ϕ̃(x, y, t) = ℜ
[

ψ̃(x, y) exp(i2πf̃ t̃)
]

, (12)

where ψ̃ is a complex function expressing the time-
independent part of the potential field. We can rewrite equa-
tions (10) and (11) in to the form:

∇̃2 ψ̃ = 0 , (13)

n · ∇̃ψ̃ = −2πif̃
(

ψ̃e − ψ̃
)

, (14)

where the difference between electrodes is defined by

ψ̃e
L = Ã exp(−2πif̃ t̃) , ψ̃e

R = 0 .

The Helmholtz-Smoluchowski equation describes slip velocity
on the outer boundary of EDL above the electrodes

ṽslip,n = Ra
(

ϕ̃e
n − ϕ̃

)

t · ∇̃ϕ̃ =

= Raℜ
[(

ψ̃e
n − ψ̃

)

exp(2πif̃ t̃)
]

t · ℜ
(

∇̃ψ̃ exp(2πif̃ t̃)
)

,

n = R,L . (15)

The slip velocity represent the tangential velocity at EDL.The
normal component of the velocity vector is considered to be
zero at EDL.

The time averaged slip velocity averaged over one period
of the AC signal is

〈ṽ〉slip,n =
Ra

2
ℜ(ψ̃e

n − ψ̃)t · ℜ(∇̃ψ̃)

+
Ra

2
ℑ(ψ̃e

n − ψ̃)t · ℑ(∇̃ψ̃) , n = R,L(16)

The time averaged Stokes equation and the continuity equation
are then used for description of the bulk hydrodynamics

0 = λ̃2
D∇̃2 〈ṽ〉 − ∇̃〈p̃〉 , ∇̃ · 〈ṽ〉 = 0 , (17)

Fig. 2. The discretization mesh consisting of 4100 elements(a) the entire
spatial domain (b) the detail above an electrode

III. N UMERICAL ANALYSIS

Numerical analyses both of the non-equilibrium and the
equilibrium models were carried out in the Comsol Multi-
physics software.

We used the standardfemtimeprocedure for the dynamical
analysis of the non-equilibrium mathematical model, eqs. (1–
5) and the boundary conditions (6–9). Transient simulations
from a homogeneous steady state to stable periodic regimes
were carried out in the first step. The obtained stable periodic
solutions were then studied to obtain the time-averaged net
velocity and other characteristics of the AC electroosmotic
flow.

Analysis of the equilibrium model (13, 17) with boundary
conditions (14, 16) was realized in two steps. The analysis of
the linear electric potential problem (13) with the boundary
condition (14) was done using thefemlin solver. The flow
problem (17) with the boundary condition (16) was then solved
by the femnlinsolver.

The Comsol Multiphysics software requires discretizationof
the spatial computation domain into a set of finite elements.
For the non-equilibrium model, we used hybrid triangle-
rectangle meshes of finite elements that enable efficient dis-
cretization the entire spatial domain including the electrical
double layers. The equilibrium model requires only the dis-
cretization using triangle finite elements with a higher density
at the electrode edges, Fig 2.

IV. RESULTS

In order to estimate numerical errors resulting from the
spatial discretization of the computational domain, we used
meshes with various spatial density for the analysis of the non-
equilibrium model. Several comparisons of results obtained by
means of different meshes are presented. Dependencies of the
dimensionless time averaged net velocity on the dimensionless
frequency and amplitude of AC electric field and on the ratio
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Fig. 3. Dependencies of the time averaged net velocity on theAC frequency,
the equilibrium model - dash-dotted lines, the non-equilibrium model - solid
lines, h̃ = 0.333, l̃ = 1.667, λ̃D = 3.3 × 10

−3 , Ã = 0.75

between electrode dimensions and on the microchannel height
were computed. The results obtained from analyses of the
equilibrium (dash-dotted lines) and the non-equilibrium (solid
lines) models are compared. The detected discrepancies and
their possible origins are discussed.

A. Frequency characteristics

The dependencies of the dimensionless time averaged net
velocity on the dimensionless frequency of electric field are
presented in Figs. 3-5. All velocity maxima (in the absolute
value) are located around̃f = 1. It agrees with the pre-
diction of the RC circuit theory for the AC electroosmotic
systems [12]. It should be noted that the precise location
on the frequency characteristics, depends on the particular
choice of the characteristic length. In this paper, the length
of periodic domain is chosen to be the characteristic length.
For low amplitude regime, the results are in a qualitative and
almost in a quantitative agreement, Fig 3. The dependency has
single maximum and the flow reversal is not predicted. The
relative deviations between predictions of the analyzed models
are less than 15% in the entire frequency range. This result can
be expected because the linearization used in the equilibrium
model is justified for the system wherẽA < 1. The deviation
can be caused by numerical erorrs and the limitations of the
equilibrium model (1D character of EDL, effect of the vertical
dimension of the model domain etc.)

The velocity dependencies for the dimensionless amplitude
Ã = 37.4 are depicted in Figs. 4, 5. Two regimes with
different λ̃D were chosen. Both the dependencies has a non-
linear shape. The equilibrium model predicts a single velocity
maximum of the frequency characteristics. In the first regime
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〈ṽ〉

f̃

B

Fig. 4. Dependencies of the time averaged net velocity on theAC frequency,
the equilibrium model - dash-dotted lines, the non-equilibrium model - solid
lines, h̃ = 0.333, l̃ = 1.667, λ̃D = 3.3 × 10−3, Ã = 37.4

(λ̃D = 3.3 × 10−3,Fig. 4), flow reversal is observed on the
non-equilibrium characteristics. The velocity maxima (inthe
absolute value) for both the models are located at the same
frequency, however, the equilibrium model predicts higher
time averaged net velocity (The relative difference is about
50%). In the latter regime(̃λD = 3.3 × 10−2,Fig. 5), the
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Fig. 5. Dependencies of the time averaged net velocity on theAC frequency,
the equilibrium model - dash-dotted lines, the non-equilibrium model - solid
lines, h̃ = 0.333, l̃ = 1.667, λ̃D = 3.3 × 10−2, Ã = 37.4
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Fig. 7. Dependence of net velocity on the phase of electric field during
one half of a period for three different meshes, dashed line -2100 elements,
dash-dotted line - 4100 elements, solid lines - 9000 elements, h̃ = 0.333,
l̃ = 1.667, λ̃D = 3.3 × 10−3, Ã = 37.4, f̃ = 3

frequency dependencies have completely different qualitative
character. The net flow obtained from the equilibrium model
has even the opposite direction than that given by the non-
equilibrium model. In a high amplitude regimes, the results
predicted by the equilibrium model must be then strongly
deviated from the real behavior. Possible numerical errorscan
negatively affect especially the non-equilibrium results.

B. Meshtests

As an improper spatial discretization can result in an
unacceptable error of the numerical approximation, meshes
of various structures and densities were tested. Three setsof
model parameters corresponding to symbols A, B, C marked
on the frequency dependencies in Figs. 3-5 were chosen for
testing of mesh quality. The numerical errors of the results
obtained from non-equilibrium model are evaluated in this
section. The time dependencies of the net velocity on the phase
of electric fieldθ during one half of a period are depicted in
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Fig. 8. Dependence of net velocity on the phase of electric field during
one half of a period for three different meshes, dashed line -2100 elements,
dash-dotted line - 4100 elements, solid lines - 9000 elements, h̃ = 0.333,
l̃ = 1.667, λ̃D = 3.3 × 10−2 , Ã = 37.4, f̃ = 3

Figs. 6-8. Three different meshes are tested (2100, 4100 and
9000 elements). The mesh consisting of 4100 elements with
detail above electrode is shown in Fig. 2. For low amplitude
regime in Fig. 6 the relative errors of net velocity caused by
the spatial disretization are less than 1%. It can be seen that
the relative errors of net velocity for high amplitude regimes,
Figs. 7, 8, are also less than 1%. Although, the quality of used
meshes seems to be good enough, numerical errors can also
results from an improper settings of the time solver or the data
postprocessing. These factors will be further studied.

C. Amplitude characteristics

One can expect that both the models produce similar re-
sults when the amplitude will not substantially exceed the
linearization limit (Ã = 1). Thus the velocity dependencies
on the amplitude of the applied electric signal were computed,
Figs. 9, 10. According to the theory [17], the velocity predicted
by the equilibrium model is proportional to the amplitude
square. The same is true for the non-equilibrium model up
to Ã ≈ 4. The non-equilibrium dependencies become non-
linear for higher amplitudes. The flow reversal on the ampli-
tude characteristics is observed for the non-equilibrium model
at Ã ∼ 30, Fig. 9.

D. Microchannel height

Dependencies of the dimensionless time averaged net ve-
locity on the microchannel height are plotted in Figs. 11, 12.
Zero velocity is expected for very thin microchannels due to
a negligible electrode polarization. There are clear maxima
of the time averaged net velocity (in the absolute value) on
the computed dependencies. Micropumps with a larger vertical
dimension are not affected by the top solid boundary and the
time averaged net velocity approaches an asymptotic value.
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In low amplitude regimes, Fig. 11, the predictions given by
both the models are very similar. In a high amplitude regime,
Fig. 12, the time averaged net velocity computed by the non-
equilibrium model is smaller (in the absolute value) than that
given by the equilibrium model for any vertical extent of the
channel. It must be noted that the equilibrium model can not
correctly predict the behavior of the pump if the Debye length
is comparable with microchannel height. The presence of the
non-monotonous part of the non-equilibrium dependence will
be further verified.
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〈ṽ〉

l̃

Fig. 14. Dependencies of the time averaged net velocity on the electrode
length ratio, the equilibrium model - dash-dotted lines, the non-equilibrium
model - solid lines,̃h = 0.333, λ̃D = 3.3 × 10−3, f̃ = 3, Ã = 37.4

E. Electrode size ratio

When the AC electroosmotic micropumps are constructed,
the size ratio between the larger and the smaller electrodescan
be crucial for their performance. We have found that there
is a value of the ratio that enables to attain the maximal
time averaged net velocity, Figs. 13, 14. In low amplitude
regimes, Fig. 13, the predicted velocity dependencies almost

coincide and the maximal time averaged net velocity (in the
absolute value) is located at̃l = 4. Substantial quantitative
differences are observed in high amplitude regimes, Fig. 14.
Location of the velocity maximum (in the absolute value) is
l̃ = 4 for the equilibrium model and̃l = 7.1 for the non-
equilibrium model. Moreover, the non-equilibrium dependence
reveals smaller sensitivity with respect to the choice of the
electrode size ratio.

V. CONCLUSION

Dependencies of the time averaged net velocity on principal
model parameters for the proposed AC electroosmotic pump
with asymmetric electrodes in the coplanar arrangement were
obtained. Two different mathematical models were numeri-
cally analyzed. It was found that there are

”
optimal“ sets

of model parameters (the electrode size ratio, the vertical
dimension of the micropump, the AC frequency) to obtain
the maximal pumping velocity. Predictions of these models
are similar only in low amplitude regimes. In principle, the
non-equilibrium model should be able to analyze the behavior
of the micropump in a substantially larger parametric space.
However, the obtained result can suffer from numerical arti-
facts. In future, we plan to verify the obtained results by both
an improved numerical code and physical experiments.
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(GD 104/08/H055).

List of symbols
A amplitude [V]
c concentration [molm−3]
D diffusivity [m2 s−1]
f frequency [s−1]
F the Faraday constant [Cmol−1]
H microchannel height [m]
L length of a periodic segment [m]
n normal unit vector
p pressure [Pa]
R molar gas constant [JK−1mol−1]
t time [s]
t tangential unit vector
T temperature [ K]
vslip slip velocity [ms−1]
〈v〉slip time averaged slip velocity [ms−1]
v net velocity [ms−1]
〈v〉 time averaged net velocity [ms−1]
v velocity [ms−1]
x spatial coordinate [m]
y spatial coordinate [m]

Greek symbols
ε electrolyte permittivity [Fm−1]



ϕ electric potential [V]
η dynamic viscosity [Pas]
λD the Debye length [m]
ψ complex electric potential [V]
ρ density [kgm−3]
θ phase of electric field [deg]

Superscripts Subscripts
e electrode ◦ characteristic value
∼ dimensionless R right electrode
− anion L left electrode
+ cation
± either+ or −

Dimensionless parameters
g̃ the ratio of the gap sizes g̃ = 0.1

l̃e ratio of electrode and nonelectrode domainsl̃e = 0.2667
Ra Raleygh number Ra = 0.372
Sc Schmidt number Sc = 348

REFERENCES

[1] Ajdari A (2000), Physical Review E 61:R45
[2] Campisi M, Accoto D, Dario P (2005), Journal of Chemical Physics

123:204724
[3] Garcia-Sanchez P, Ramos A, Green Get. al. (2006), IEEE Transactions

on Dielectrics and Electrical Insulation 13:670
[4] Green N G, Ramos A, Gonzalez Aet. al. (2002), Physical Review E

66:026305
[5] Mpholo M, Smith C G, Brown A B D (2003), Sensors and Actuators

B-Chemical 92:262
[6] Studer V, Pepin A, Chen Yet. al. (2004), Analyst 129:944
[7] Physicochemical hydrodynamics: An Introduction, Wiley and Sons, New

York, 1994.
[8] Green N G, Ramos A, Morgan H (2000), Journal of Physics D-Applied

Physics 33:632
[9] Urbanski J P, Levitan J A, Burch D Net. al. (2007), Journal of Colloid

and Interface Science 309:332
[10] Mortensen N A, Olesen L H, Belmon Let. al. (2005), Physical Review

E 71:056306
[11] Ramos A, Morgan H, Green N Get. al. (2005), Journal of Applied

Physics 97:084906
[12] Squires T M, Bazant M Z (2004), Journal of Fluid Mechanics 509:217
[13] Multiphysical Modeling of DC and AC Electroosmosis in Micro- and

Nanosystems in Recent Advances in Modelling and Simulation, Petrone
G, Cammarata G, I-Tech Education and Publishing, Vienna, 2008.

[14] Cervenka P, Pribyl M, Snita D (2009, In press), Microelectronic engi-
neering

[15] Levitan J A, Devasenathipathy S, Studer Vet. al. (2005), Colloids and
Surfaces a-Physicochemical and Engineering Aspects 267:122

[16] Gonzlez A, Ramos A, Green N Get. al. (2000), Physical Review E
61:4019

[17] Ramos A, Morgan H, Green N Get. al. (1998), Journal of Physics D-
Applied Physics 31:2338


