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Abstract—One type of AC electroosmotic micropumps is driven experimentally observed by PIV techniques [3,4]. The syste

by a low amplitude AC electric field imposed on systems of asymmetry leads to an asymmetry of the eddies and finally to
co-planar electrodes. Interesting non-linear phenomenaugh as a non-zero net velocity.

flow reversals have been observed in experimental studiesh@& h ical dels of | is h b d
value and the direction of the net velocity depends on the Ac ~ Mathematical models of AC electroosmosis have been de-

electric field parameters, the microchannel geometry and d¢ter  veloped. The computation domain is usually divided into the
parameters. capacitor domains (the electric double layers — EDLs) and
In this contribution, we present predictions of non-equilibrium  the resistor domain (electrolyte bulk). Then, the boundary
and equilibrium mathematical models describing electrolye ., iions for electric potential on the capacitor-resisn-
transport in these AC micropumps. The classical equilibrium . .
approach is based on the use of the capacitor-resistor bousdy terfaces_ can be derived. However, these bpundary conslition
conditions for electric potential, the slip boundary condtions for ~are valid only when a low voltage (amplitude 25mV)
the velocity at electrode surfaces, and the Laplace, the Stes is applied on the microelectrodes, i.e., the linearizatign
and the continuity equations. The non-equilibrium mathemdical  the Poisson-Boltzmann equation is justified [12]. Ones the

model is based on the mass and momentum balances, the Gausgjiqyrihytion of the electric potential at the capacitosiseor
law, and the non-slip boundary conditions.

We have found that both models predict almost the same interface is evaluated, then velocity slip boundary caodg
behavior of the AC micropumps in low amplitude regimes. If am 0N the electrode surfaces can be expressed by the Helmholtz-
plitude substantially exceeds the linearization limit 4 > 25mV), Smoluchowski equation [7]. So, the transport (flow) problem

the obtained results can qualitatively differ. Parametrical study is solved independent'y On'y in the resistor domain repm
has revealed that there are, optimal“ AC frequency, the vertical by the electrolyte bulk

confinement of microchannels and the ratio between the sizef o . -
asymmetric electrodes to attain the maximal time averaged et Alternative non-equilibrium models have been devel-
velocity. oped [10, 13, 14]. This approach allows analyzing the model

equations for voltages above the linearization limit (aitaple
> 25mV) with non-equilibrated EDL. The non-equilibrium

A design of the AC electrokinetic micropumps was firsinodels describe the distribution of electric potentialhatihe
proposed by Ajdari [1]. The micropump can be constructege of the Poisson equation and the molar balances of ions.
by means of arrays of asymmetric pairs of co-planar micretowever, the flow problem has to be solved simultaneously.
electrodes deposited on a dielectric substrate. It wasoéagpe The Navier-Stokes, the continuity equation and the zera<{no
that the asymmetry of the electric field will lead to a net flowlip) velocity boundary conditions are used.
of the electrolyte. His predictions were verified by several
experimental and theoretical works, e.g., [2—6]. Il. MATHEMATICAL MODEL

In the co-planar arrangement, the AC electric field imposed
on the microelectrodes has the tangential and the norrhAaI
components. The normal component induces electrode polarThe co-planar arrangement of the AC electroosmotic pumps
ization (capacitive charging). Then, the lateral compdregn is considered, Fig. 1. The studied microfluidic pump can be
the electric field forces the amassed electric charge to maepresented by a single segment of a long microfluidic cHanne
along the electrodes. As the electric charge is formed by iowe assume that a microchannel consists of an infinitely large
of a non-zero diameter, the moving ionic particles pull theeries of the segment with periodic boundary conditions. We
surrounding liquid via viscous forces. Combination of thassume that width of the microchannels is much larger than
coulombic, pressure and viscous forces in a liquid resultse characteristic dimensions of the segments, so the AC
in the formation of eddies above the electrodes that westectroosmotic pumps can be described as two-dimensional

I. INTRODUCTION

Micropump configuration



The velocity and pressure fields in the electrolyte are desdr
by the Navier-Stokes equation and the continuity equation f
an incompressible Newtonian fluid
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Fig. 1. Scheme of one segment of the AC electroosmotic micrgp
Dashed-dotted lines indicate the periodic boundary cirdit @ v=0. (2)

where Sc is the Schmidt number and Ra is the Raleygh number

objects of lengthL and heightf. The electrodes have lengthdefined by
L. and R, and are separated by two ga@s, Gs. 5
A symmetric mono-monovalent water electrolyte (e.g., Ra — —— (E) Se —
potassium chloride) is considered as the fluid in microchan- nD \ F ’ pD
nels. No changes of density, viscosity and temperature are ) o o ) )
expected. No faradaic reactions are assumed on the elestrodn€ €lectric potential field satisfies the Poisson equation
Formation of the Stern part of EDL or condensed EDL is not <o <o
considered in this study. Vg =-Apq. ®)

B. Non-equilibrium approach In order to evaluate the field of electric charge density, two

) ) ) . molar balances for the anion (-) and the cation (+) have to be
The model equations are transformed into a dimensionl§iSsq The total molar flux density of an ion is given by the

form. The spatial coordinates and dimensions the pump agdy of the convective, the electromigration and the diffosi
EDL thickness are scaled by the factor. contributions. Linear combinations of two molar balances

o oy - AD gives the equations for concentration and conductivityhia t
=70 Y=o Ap = T dimensionless form.
) ) 96 o ) )
where the Debye length\p) is defined by oc _ AV (\75 RV (chZ?) ’ @)
,  eRT ot
D 9¢, F2° 95
q T = ~ ~ = JU
The characteristics dimensions were transformed to dimen- i —ApV - (Vq —Va- CV‘/’) ’ ®)

sionless form. The dimensionless height of the channel, the _ N
ratio between electrode sizes, the ratio of the gap sizes akfte non-slip boundary conditions are used for all electesly
the relative ratio of electrode and nonelectrode domaies &olid interfaces

defined by v=0. (6)
7 H 7 e ~ Gl T Le + Re
h = T l= R, 9= Gy le = A Electric potential on the electrodes is given by
The dimensionless timéand the frequency are given by @5 = Asin(2rf) , $%=0. (7
-t L ~ . . o .
t=—, to= /\% , [ =[ts. The insulating boundary conditions are used for electric po
to tential on the non-electrode solid boundaries
The other dimensionless quantities are defined by )
-V@=0. 8
(j_(c“‘—c_) é_c“‘—i—c_ nove ®
2¢o ’ 2¢0 The spatially periodical solution is considered
. P RT -~ % - A ~ ~ = 4
P=—5 Po=—F7:, ¢:_7 AZ_? x, 7t: :E+L7 7t7 =g, v,p,c, 9
> I > > §(@,y,t) = &( y,t), £=¢,9,p ©)
I . D and thus the periodical boundary conditiongat 0 andz =
V= D/L”’ P= 9 RT L are applied.
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C. Equilibrium approach @)
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The equilibrium approach enables to decouple the electro- S S e e e

static and the flow parts of the problem. The model equations e
are transformed into a dimensionless form with the use of
same scaling factors as in previous section.

Electrical problem in electrolyte bulk is governed by
Laplace equation due to assumption of electroneutralithhén
electrolyte bulk

Vg =0, (10)

The boundary conditions for electric potential are the same

in the non-equilibrium model except the electrode bouresari R A
Here the capacitor-resistor boundary conditions are usgd [
16] T AR
o N
H-VsZ?:—a—g(cﬁe—@) (11) S

Fig. 2. The discretization mesh consisting of 4100 eleméatshe entire

Using complex formulation spatial domain (b) the detail above an electrode

Bz.y.t) = R[d(@y) expi2nfD| . (12)

where ¢ is a complex function expressing the time- IIl. NUMERICAL ANALYSIS

independent part of the potential field. We can rewrite equa-Numerical analyses both of the non-equilibrium and the

tions (10) and (11) in to the form: equilibrium models were carried out in the Comsol Multi-
o physics software.
V=0, (13)  We used the standafémtimeprocedure for the dynamical
analysis of the non-equilibrium mathematical model, efys. (
n- Vi =—2mif (1[,6 — 1[,) , (14) 5) and the boundary conditions (6-9). Transient simulation

from a homogeneous steady state to stable periodic regimes
where the difference between electrodes is defined by were carried out in the first step. The obtained stable piriod
~ _ . _ solutions were then studied to obtain the time-averaged net
Y7 = Aexp(=2mift) , Y =0. velocity and other characteristics of the AC electroosmoti
flow.

Analysis of the equilibrium model (13, 17) with boundary
conditions (14, 16) was realized in two steps. The analykis o
the linear electric potential problem (13) with the boundar
condition (14) was done using thfemlin solver. The flow
- - . _ - problem (17) with the boundary condition (16) was then stlve

= Ra®t Kﬂ’i - 7/’) eXP(met)} t-R (V¢ eXP(Qm'ft)) by thefemnlinsolver.

The Comsol Multiphysics software requires discretizatbn

n=R,L. (15) the spatial computation domain into a set of finite elements.

For the non-equilibrium model, we used hybrid triangle-

The slip velocity represent the tangential velocity at EDhe  rectangle meshes of finite elements that enable efficient dis
normal component of the velocity vector is considered to Rgetization the entire spatial domain including the eleatr

The Helmholtz-Smoluchowski equation describes slip vigjoc
on the outer boundary of EDL above the electrodes

ﬁslip,n = Ra (95; - ()5) t- @()5 =

zero at .EDL' ) ) _double layers. The equilibrium model requires only the dis-
The time averaged slip velocity averaged over one periggetization using triangle finite elements with a highersign
of the AC signal is at the electrode edges, Fig 2.
- Ra_, -, -~ - -
(Dstipn = R — )t - R(VY) IV. RESULTS

Ra - } o In order to estimate numerical errors resulting from the
+ —SWe —Y)t-(Vy), n=R,L(16) spatial discretization of the computational domain, weduse
2 meshes with various spatial density for the analysis of the n
The time averaged Stokes equation and the continuity exjuatequilibrium model. Several comparisons of results obthime
are then used for description of the bulk hydrodynamics means of different meshes are presented. Dependencies of th
o . dimensionless time averaged net velocity on the dimensssnl
0=XMpV?(¥)-V({p), V-(¥)=0, (17)  frequency and amplitude of AC electric field and on the ratio
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Fig. 3. Dependencies of the time averaged net velocity oM@iérequency, Fig. 4. Dependencies of the time averaged net velocity oM@érequency,
the equilibrium model - dash-dotted lines, the non-equillin model - solid  the equilibrium model - dash-dotted lines, the non-eqiilin model - solid

lines,h =0.333, | = 1.667, A\p = 3.3 x 1073, A =0.75 lines,h = 0.333, [ = 1.667, A\p = 3.3x 1073, A =374

between electrode dimensions and on the microchannelthei ), = 3.3 x 10-3,Fig. 4), flow reversal is observed on the

were computed. The results obtained from analyses of then_equilibrium characteristics. The velocity maxima (ire
equilibrium (dash-dotted lines) and the non-equilibrisolid  5psolute value) for both the models are located at the same
lines) models are compared. The detected discrepancies gaflyency, however, the equilibrium model predicts higher
their possible origins are discussed. time averaged net velocity (The relative difference is abou
. 50%). In the latter regime(p = 3.3 x 1072,Fig. 5), the

A. Frequency characteristics

The dependencies of the dimensionless time averaged net
velocity on the dimensionless frequency of electric field ar 0.4

presented in Figs. 3-5. All velocity maxima (in the absolute <1~)>

value) are located aroundl = 1. It agrees with the pre-

diction of the RC circuit theory for the AC electroosmotic 0 7 /Q\_’_

systems [12]. It should be noted that the precise location N o~

on the frequency characteristics, depends on the panticula ‘ \ -

choice of the characteristic length. In this paper, the tleng \ !

of periodic domain is chosen to be the characteristic length -0.4} : \ B

For low amplitude regime, the results are in a qualitativd an

almost in a quantitative agreement, Fig 3. The dependersey ha \ /

single maximum and the flow reversal is not predicted. The _o0sl ) S L

relative deviations between predictions of the analyzedets ' : ) :

are less than 15% in the entire frequency range. This reanlt c )

be expected because the linearization used in the equitibri \ !

model is justified for the system where < 1. The deviation -1.2y ' vl

can be caused by numerical erorrs and the limitations of the \/

equilibrium model (1D character of EDL, effect of the veatic ; ; ;

dimension of the model domain etc.) 1072 107" 10° 100+ 10
The velocity dependencies for the dimensionless amplitude f

A = 37.4 are depicted in Figs. 4, 5. Two regimes with

different A\, were chosen. Both the dependencies has a ndiis. 5. Dependencies of the time averaged net velocity om@érequency,

linear shape. The equilibrium model predicts a single V'QJOCthe equilibrium model - dash-dotted lines, the non-equilim model - solid

. L 4 lines,h = 0.333, ] = 1.667, \p = 3.3 x 1072, A=37.4
maximum of the frequency characteristics. In the first regim
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Fig. 6. Dependence of net velocity on the phase of electrid firring

one half of a period for three different meshes, dashed li2&00 elements,
dash-dotted line - 4100 elements, solid lines - 9000 elesnént= 0.333,

1=1.667, A\p =33x 1073, A=0.75, f = 3 -15} e KR e
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T - Fig. 8. Dependence of net velocity on the phase of electrid fiiring
051 0 21932 ) | one half of a period for three different meshes, dashed li2&00 elements,
: dash-dotted line - 4100 elements, solid lines - 9000 elesnént= 0.333,
. - _ | [=1.667, A\p =33x1072, A=374, f=3

Figs. 6-8. Three different meshes are tested (2100, 4100 and
9000 elements). The mesh consisting of 4100 elements with
detail above electrode is shown in Fig. 2. For low amplitude
regime in Fig. 6 the relative errors of net velocity caused by
the spatial disretization are less than 1%. It can be sedn tha
the relative errors of net velocity for high amplitude regsn

' ' ' ' : Figs. 7, 8, are also less than 1%. Although, the quality ofluse
0 30 60 9 120 150 9 180 meshes seems to be good enough, numerical errors can also
results from an improper settings of the time solver or tha da
Fig. 7. Dependence of net velocity on the phase of electrid fiering POStprocessing. These factors will be further studied.

one half of a period for three different meshes, dashed li2&00 elements, . o
dash-dotted line - 4100 elements, solid lines - 9000 elespént= 0.333, C. Amplitude characteristics

[=1667,Ap =3.3x 1077, A=374, f =3 One can expect that both the models produce similar re-
sults when the amplitude will not substantially exceed the
linearization limit (4 = 1). Thus the velocity dependencies

frequency dependencies have completely different qtigkta on the amplitude of the applied electric signal were comghute

character. The net flow obtained from the equilibrium modeligs. 9, 10. According to the theory [17], the velocity prtdd
has even the opposite direction than that given by the ndsy the equilibrium model is proportional to the amplitude
equilibrium model. In a high amplitude regimes, the resultqjuare. The same is true for the non-equilibrium model up
predicted by the equilibrium model must be then stronglp A ~ 4. The non-equilibrium dependencies become non-
deviated from the real behavior. Possible numerical ercars linear for higher amplitudes. The flow reversal on the ampli-
negatively affect especially the non-equilibrium results tude characteristics is observed for the non-equilibrivodet

at A ~ 30, Fig. 9.

B. Meshtests

As an improper spatial discretization can result in aR- Microchannel height
unacceptable error of the numerical approximation, mesheDependencies of the dimensionless time averaged net ve-
of various structures and densities were tested. Threeoetdocity on the microchannel height are plotted in Figs. 11, 12
model parameters corresponding to symbols A, B, C mark&ero velocity is expected for very thin microchannels due to
on the frequency dependencies in Figs. 3-5 were chosen #onegligible electrode polarization. There are clear maxim
testing of mesh quality. The numerical errors of the results the time averaged net velocity (in the absolute value) on
obtained from non-equilibrium model are evaluated in thihie computed dependencies. Micropumps with a larger atrtic
section. The time dependencies of the net velocity on thegohaimension are not affected by the top solid boundary and the
of electric fieldd during one half of a period are depicted irtime averaged net velocity approaches an asymptotic value.
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Fig. 9. Dependencies of the time averaged net velocity o@amplitude, 10—2 10—1 N
the equilibrium model - dash-dotted lines, the non-eqpiilim model - solid h

lines,h = 0.333, 1 = 1.667, A\p = 1 x 1072, f = 0.95

Fig. 11. Dependencies of the time averaged net velocity emticrochannel
height, the equilibrium model - dash-dotted lines, the aqoilibrium model
- solid lines,l = 1.667, A\p =3.3x 1073, f=3, A=0.75
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Fig. 10. Dependencies of the time averaged net velocity ed\@ amplitude, \ ’a

the equilibrium model - dash-dotted lines, the non-equilin model - solid -15¢ : : - RV
lines,h = 0.333, 1 = 1.667, A\p = 3.3 x 1073, f =3 \

In low amplitude regimes, Fig. 11, the predictions given by ~
both the models are very similar. In a high amplitude regime, = —

Fig. 12, the time averaged net velocity computed by the non- 10 10 il
equilibrium model is smaller (in the absolute value) thaat th

given by the equmbrlum model for any_\_/er_tlcal extent of th%i .12. Dependencies of the time averaged net velocity emticrochannel
channel. It must be noted that the equilibrium model can ngdignt, the equilibrium model - dash-dotted lines, the aquilibrium model
correctly predict the behavior of the pump if the Debye léngt solid lines,i = 1.667, A\p = 3.3 x 1073, f =3, A = 374

is comparable with microchannel height. The presence of the

non-monotonous part of the non-equilibrium dependenck wil

be further verified.
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Fig. 13. Dependencies of the time averaged net velocity enetactrode
length ratio, the equilibrium model - dash-dotted lineg tion-equilibrium
model - solid linesh = 0.333, A\p =3.3x 1073, f =3, A=0.75
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Fig. 14. Dependencies of the time averaged net velocity enethctrode
length ratio, the equilibrium model - dash-dotted liness tion-equilibrium
model - solid linesh = 0.333, A\p =3.3x 1073, f=3, A=374

E. Electrode size ratio

When the AC electroosmotic micropumps are constructeggf,>
the size ratio between the larger and the smaller electrcates v
be crucial for their performance. We have found that thefe
is a value of the ratio that enables to attain the maximél

coincide and the maximal time averaged net velocity (in the
absolute value) is located at= 4. Substantial quantitative
differences are observed in high amplitude regimes, Fig. 14
Location of the velocity maximum (in the absolute value) is
[ = 4 for the equilibrium model and = 7.1 for the non-
equilibrium model. Moreover, the non-equilibrium depence
reveals smaller sensitivity with respect to the choice & th
electrode size ratio.

V. CONCLUSION

Dependencies of the time averaged net velocity on principal
model parameters for the proposed AC electroosmotic pump
with asymmetric electrodes in the coplanar arrangemeng wer
obtained. Two different mathematical models were numeri-
cally analyzed. It was found that there areptimal“ sets
of model parameters (the electrode size ratio, the vertical
dimension of the micropump, the AC frequency) to obtain
the maximal pumping velocity. Predictions of these models
are similar only in low amplitude regimes. In principle, the
non-equilibrium model should be able to analyze the belmavio
of the micropump in a substantially larger parametric space
However, the obtained result can suffer from numericat arti
facts. In future, we plan to verify the obtained results byhbo
an improved numerical code and physical experiments.
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List of symbols

A amplitude [V]

c concentration [molm?]

D diffusivity [m? s71]

f frequency [s]

F the Faraday constant [Cmdl]

H microchannel height [m]

L length of a periodic segment [m]
n normal unit vector

P pressure [Pa]

R molar gas constant [JK mol—']
t time [s]

t tangential unit vector

T temperature [K]

vsiip  Slip velocity [ms™]

(v)siip time averaged slip velocity [ms]
net velocity [ms!]

time averaged net velocity [m$]
velocity [ms™!]

spatial coordinate [m]

spatial coordinate [m]

<

time averaged net velocity, Figs. 13, 14. In low amplitud&reek symbols
regimes, Fig. 13, the predicted velocity dependencies stime electrolyte permittivity [Fnr']



electric potential [V]
dynamic viscosity [Pas]

D the Debye length [m]
complex electric potential [V]
density [kgnT3]
phase of electric field [deg]

T R >3 6

Superscripts Subscripts

e electrode o characteristic value
~ dimensionless R  right electrode

— anion L left electrode

+  cation

+ eithert or ~

Dimensionless parameters

g  the ratio of the gap sizes g=0.1

l. ratio of electrode and nonelectrode domains- 0.2667

Ra Raleygh number Ra =0.372

Sc  Schmidt number Sc = 348
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