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 
Abstract— Surface potential decay (SPD) measurements are 

considered as the most appropriate technique for the 
investigation of the corona charging of dielectric surfaces. The 
aim of the experiments reported in the present paper was to point 
out the peculiarities of SPD in the case of non-homogeneous 
dielectrics, such as the non-woven fabrics employed for heat, 
ventilation and air conditioning. This study reports experimental 
data collected on two types of polypropylene (PP) media, 
characterized by different fiber diameters. The experiments were 
performed on 60 mm x 50 mm samples of non-weaved sheets of 
PP (sheet thickness: 300 m; average fiber diameter: 20 m), in 
ambient air (temperature: 18°C to 22°C; relative humidity: 25% 
to 60%). The samples were charged for 10 s by exposing them to 
the negative corona discharge, using a triode-type electrode 
arrangement, energized from a DC high-voltage supply. Their 
surface potential was then measured with an electrostatic 
voltmeter. The measured data indicate that the charge of the 
filter is limited by the local discharges that occur inside the 
fibrous dielectric. 
 

Index Terms— electric charge, corona discharge, dielectric 
materials, surface potential decay 
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I. INTRODUCTION 
URFACE potential decay (SPD) measurements [1-4] have 
been extensively employed for the investigation of the 

corona charging of dielectric surfaces, due to their reliability 
and low cost [5-8]. The development of this field of research 
has been stimulated by industry demand related to adjustment 
of Xerox-photography processes, development of electrets, 
assessment of cable insulation, evaluation of electrostatic risks 
or monitoring of aged insulators [9-12].  

Most of the literature on SPD deals with homogenous 
dielectrics, such as insulating films or plates. Several 
mechanisms are involved in surface potential evolution of 
such materials: atmospheric neutralization, surface 
conduction, polarization, intrinsic conduction, piezoelectricity, 
interfacial charge injection, and so on [13].  

The peculiarities of SPD in the case of non-homogeneous 
dielectrics, such as the non-woven fabrics employed for heat, 
ventilation and air conditioning, were the object of relatively 
fewer studies [14, 15]. Most of them aimed at identifying the 
factors that affect the collection efficiency of these materials 
when employed as air filters, as the electrostatic forces acting 
on charged particles might trap them on the charged fabrics.  

Thus, Oda and Ochiai [16] reported several interesting 
observations regarding the corona-charging characteristics of a 
non-woven poly-propylene (PP) sheet air filter: (1) the surface 
potential of the filter media is limited by the local discharges 
that occur inside the porous sheet; (2) the surface potential 
profile becomes rougher with the increase of the voltage 
applied to the corona-charging electrode system; (3) the 
relative humidity of ambient air accelerated the SPD. 
Horenstein [17], as well as Kacprzyk and W. Mista [18] 
confirmed the limitation of the surface potential that can be 
attained by high-resistivity corona-charged fabrics.   

Walsh and Stenhouse [19], as well as F.J. Rornay et al [20] 
pointed out the effect of using mixed fibers of various layouts 
on the efficiency collection of the electret filters. However, it 
is important to relate the operating characteristics of the filters 
to their charging state. A good filter is the one that is capable 
to preserve as long a time as possible a high level of charge, 
and hence a high collection efficiency. 
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In two previous papers [21, 22], the authors studied the 
positive corona-charging of a PP non-woven media. They 
pointed out that a triode-type electrode arrangement may 
improve uniformity of corona-charging, though it does not 
significantly increase the charge imparted to the samples. For 
this polarity, the surface charge density seems to be limited at 
8 C/m2 when the samples are in contact with a grounded 
electrode and exposed to uncontrolled ambient conditions. 

The aim of the experiments reported hereafter was to 
expend that study to the case of negative corona-charging, in 
order to facilitate a more in depth analysis of charge decay 
phenomena, as influenced by the ambient conditions and by 
the fibrous structure of the tested media. 

II. MATERIALS AND METHODS 
The experiments were performed on 60 mm x 50 mm 

samples of two non-woven polypropylene (PP) media, 
designated as M1 and M2 (Fig. 1), in ambient air 
(temperature: 18°C to 22°C; relative humidity: 25% to 60%). 
The thickness is the same for both medias: 400 m. M1 is 
entirely made of 2.8 dtex PP fibers (average fiber diameter: 20 
m), while M2 is a mixture of 85% of 2.8 dtex PP fibers and 
15% of 0.1 dtex PP fibers (average fiber diameter: 4 m). 

The triode-type electrode arrangement employed for the 
experiments is shown in Fig. 2 (a). The electrode system is 
energized from a negative DC high-voltage sypply (model SL 
300 Spellman, Hauppauge, NY). The corona discharge is 
generated between a wire-type dual electrode [23] and a 
metallic grid electrode, shown in Fig. 2 (b). In all the 
experiments, the samples were charged for 10 s (a duration 
beyond which no significant increase of the initial surface 
potential was noticed), at various grid potentials 

The dual electrode consists of a tungsten wire (diameter 0.2 
mm) supported by a metallic cylinder (diameter 26 mm), 
distanced at 34 mm from its axis, and energized from the same 
high-voltage supply. Unless otherwise specified, the distance 
between the wire and the plate electrode is 30 mm. 

The grid is connected to the ground through a series of 
callibrated resistors having a total resistance R. In this way, for 
the constant current I = 100 A delievered by the power 
supply, a well-defined potential Vg = RI is imposed between 
the grid electrode and the grounded plate on which the 
samples are placed. Part of the charge carriers generated by 
the corona electrode pass through the grid and are driven by 
this potential to the surface of the non-woven media, which 
retains them. The potential at the surface of the media Vm due 
to the accumulation of these charges is limited by either the 
potential of the grid Vg or by the partial discharge voltage of 
the sample Vb. Indeed, when Vm = Vg the electric field in the 
air gap between the grid and the sample is zero, the charge 
carriers are no longer attracted by the surface of the media, 
and no more charge can be deposited on the fabric. The 
potential at the surface of the media Vm can be increased by 
increasing the potential of the grid electrode Vg. However, as 
soon as Vg > Vb, partial discharges occur in the media, so that 
the potential Vm that is measured at the surface of the samples 
can never exceed Vb. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  1. Photograph of the non-woven polypropylene media. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (b) 
Fig.  2. Electrode systems employed for the corona-charging of non-woven 
media (all dimensions are in milimeters); (a) wire-type dual electrode facing a 
grounded plate; (b) triode-type arrangement; (c) aspect of the grid electrode 
(grid wire diameter: 1.18 mm). 

 
The surface potential of the samples is measured with an 

electrostatic voltmeter (model 341B, equiped with an 
electrostatic probe model 3450, Trek Inc., Medina, NY) and 
monitored via an electrometer (model 6514, Keitheley 
Instruments, Cleveland, OH), connected to a personal 
computer (Fig. 3). The processing of the data is performed 
using a virtual instrument, in LabView environment.  
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Fig.  3. Experimental set-up for the measurement of the surface potential 

 

III. RESULTS AND DISCUSSION 
The average surface potential decay curves recorded for 

media M1 corona charged using several values of the potential 
Vg of the grid electrode are displayed in Figs. 4 and 5. The 
initial value Vmo of the potential Vm measured at the surface of 
the media increased progressively with the voltage applied to 
the grid, as long as Vg < 1.5 kV (Fig. 4). At Vg > 1.5 kV (Fig. 
5), the initial surface potential remains pratically the same as 
the one obtained for Vg = - 1.22 kV, that is: Vmo

(max) = 0.9 kV. 
It is sure that at the moment when the high-voltage supply is 
turned off the potential Vs at the surface of the media is closer 
to Vg, but it decays rather fast. Therefore, the potential Vmo

(max), 
which is measured 3 s after the high-voltage turn-off, is only 
roughly 0.75 Vg. 

At higher voltages applied to the grid electrode, the so-
called cross-over phenomena occurred (Fig. 5): the initial 
surface voltage is higher, but the decay is faster, due to a 
physical mechanism explained by several researchers [1-4]. 
Thus, at 15 min after high-voltage turn-off (Fig. 6), the 
potential at the surface of the media is Vm(15 min) = 730 V, for Vg 
= 3.09 kV, which is lower than Vm(15 min) = 800 V, and Vm(15 min) 
= 850 V, recorded respectively for Vg = 2.05 kV and Vg = 1.22 
kV. Thus, the best charging effect is obtained for a grid 
voltage Vg = - 1.22 kV, as can also been seen in Fig. 7, which 
was obtained by processing the experimental data using the 
SURF function of Matlab. 

Heating the samples prior to corona-charging may change 
the aspect of surface potential decay curves (Fig. 8), due to 
two competing physical mechanisms: (i) the increase of the 
volume conductivity with the increase of the temperature; (ii) 
the decrease of the surface conductivity with the evaporation 
of part of the adsorbed water. The former mechanism is 
responsible for the fast decay of the surface potential during 
the first three minutes after corona-charge deposition. As the 
temperature decreases with time, this effect vanishes and the 
surface potential decay slows down.  
 
 

 
Fig.  4. Typical surface potential decay curves obtained for media M1 at 
various potentials of the grid electrode Vg < 1.5 kV. 
 

 
Fig.  5. Typical surface potential decay curves obtained for media M1 at 
various potentials of the grid electrode Vg > 1 kV. 

 
Fig.  6. Surface potential of media M1 measured at t = 0 s and t = 15 min 
as function grid potential Vg. Each point is the average of at least three 
measured values. The maximum dispersion range was 20%, for Vg = 3 kV. 
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Fig.  7. Estimated average values of the surface potential of media M1 as 
function of time t and grid potentail Vg. 

 

 
Fig.  8. Typical surface potential decay curves obtained for media M1 
corona-charged using a grid electrode potential Vg = 1.22 kV, after being 
heated to various temperatures:  = 20°C, 50°C, 70°C and 90°C. 
 
 

The comparison between the surface potential decay curves 
obtained for heated and non-heated samples is in the favor of 
the former. The dried samples preserved better the charge than 
those that were not thermally conditionned. 

The influence of the superficial moisture on the surface 
potential decay characteristics is confirmed by the results 
displayed in Figs. 9 and 10, which were obtained for samples 
that had been maintained for more than 24 h in a relatively dry 
atmosphere (RH < 25%). For these samples, the surface 
potential had a higher initial value Vso and decayed at a slower 
pace. The curves in Fig. 11 clearly show that the potential Vm 
at the surface of the non-woven media M1 was at any time and 
for any grid potential Vg higher in the experiments performed 
with samples maintained at lower ambiant humidity.  

 

Fig.  9. Typical surface potential decay curves obtained for media M1 at 
various potentials of the grid electrode Vg < 1.5 kV, at low ambient humidity. 
 
 

 
Fig.  10. Typical surface potential decay curves obtained for media M1 at 
various potentials of the grid electrode Vg > 1 kV, at low ambient humidity. 
 
 

The surface potential decay curves obtained in all these 
negative-corona charging experiments have a different aspect 
than those previously recorded at positive polarity of the high-
voltage supply that energizes the electrode system [21, 22]. 
The initial surface potential measured for the positive corona 
was higher than for negative corona, but the dispersion of the 
measured values was larger. On the other hand, the surface 
potential at 15 min was always higher for the negative 
polarity.  

The comparison between these curves point out that the 
nature of the ionic species generated by the negative corona 
favors the retention of the charge by the non-woven PP.  In 
spite of the fact that negative corona is accompanied by the 
generation of a larger quantity of ozone, this polarity is 
recommended for the development of an industrial corona-
charging process for this type of filter media. 
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Fig.  11. Surface potential of media M1 measured in low humidity ambient 
air, at t = 0 s and t = 15 min as function grid potential Vg. Each point is the 
average of at least three measured values. The maximum dispersion range was 
15%, for  Vg = 3 kV. 

 
Fig.  12. Comparison between the surface potential of media M1, at two 
values of the relative humidity of ambient air, at t = 0 s and t = 15 min, as 
function grid potential Vg.  

 
The experiments on media 2 were done at low relative 

humidity of the ambient air: RH = 25%. The average surface 
potential decay curves recorded for this media when corona 
charged using several values of the potential Vg of the grid 
electrode are displayed in Figs. 13 and 14. Similar to media 
M1, the initial value Vmo of the potential Vm measured at the 
surface of the media M2 increased progressively with the 
voltage applied to the grid, as long as Vg < 1.5 kV (Fig. 13).  

At Vg > 1.5 kV (Fig. 14), the so-called “cross-over” 
phenomena occurred, but the surface potential values 
measured right after and 15 min after high-voltage turn-off 
(Fig. 15) remained pratically the same as the one obtained for 
Vg = - 1.08 kV, that is: Vmo

(max) = -1 kV and Vm(15 min) = -0.9 kV.  

 
Fig.  13. Typical surface potential decay curves obtained for media M2 at 
various potentials of the grid electrode Vg < 1.5 kV. 
 

 
Fig.  14. Typical surface potential decay curves obtained for media M2 at 
various potentials of the grid electrode Vg > 1 kV. 
 

 
Fig.  15. Surface potential of media M2 measured at t = 0 s and t = 15 min 
as function grid potential Vg. Each point is the average of at least three 
measured values. The maximum dispersion range was 12%, for  Vg = 3 kV. 
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The surface potential of media M2 at 15 min after high-
voltage turn-off, is higher than that of media M1. The larger 
total surface of the fibers composing the media M2, which 
contains 15% of 0.1 dtex fibers, may explain their ability to 
better preserve the charge acquired by corona discharge. 
Further investigations are needed to confirm the positive effect 
of such combined textures on the charging and discharging 
characteristics of non-woven media.   

CONCLUSION 
Negative polarity seems to be more effective for the corona-

charging of PP non-woven media. Thermal pre-conditioning 
of the materials and maintaining a low relative humidity of the 
ambient air may reduce the superficial moisture and favor the 
retention of the charge. The use of finer fibers is likely to 
improve the charging characteristics of these materials. 
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